Skip to main content
Top
Published in: Experimental Mechanics 7/2013

01-09-2013

Load-Inversion Device for the High Strain Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars

Authors: M. Dunand, G. Gary, D. Mohr

Published in: Experimental Mechanics | Issue 7/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A Digital Image Correlation (DIC) algorithm is used to determine the strain history in the specimen gage section based on high speed video imaging. Detailed finite element analysis of the experimental set-up is performed to validate the design of the load inversion device. It is shown that under the assumption of perfect alignment and slip-free attachment of the specimen, the measured stress–strain curve is free from spurious oscillations at a strain rate of 1,000 s−1. Validation experiments are carried out using tensile specimens extracted from 1.4 thick TRIP780 steel sheets. The experimental results for uniaxial tension at strain rates ranging from 200 s−1 to 1,000 s−1 confirm the oscillation-free numerical results in an approximate manner. Dynamic tension experiments are also performed on notched specimens to illustrate the validity of the proposed experimental technique for characterizing the effect of strain rate on the onset of ductile fracture in sheet materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676CrossRef
2.
go back to reference Harding J, Wood EO et al (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96CrossRef Harding J, Wood EO et al (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96CrossRef
3.
go back to reference Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–185CrossRef Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–185CrossRef
4.
go back to reference Ellwood S, Griffiths LJ et al (1982) A tensile technique for materials testing at high strain rates. J Phys E Sci Instrum 15(11):1169CrossRef Ellwood S, Griffiths LJ et al (1982) A tensile technique for materials testing at high strain rates. J Phys E Sci Instrum 15(11):1169CrossRef
5.
go back to reference Lindholm U, Yeakley L (1968) High strain-rate testing: tension and compression. Exp Mech 8(1):1–9CrossRef Lindholm U, Yeakley L (1968) High strain-rate testing: tension and compression. Exp Mech 8(1):1–9CrossRef
6.
go back to reference Mohr D, Gary G (2007) M-shaped specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus. Exp Mech 47(5):681–692CrossRef Mohr D, Gary G (2007) M-shaped specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus. Exp Mech 47(5):681–692CrossRef
7.
go back to reference Tanimura S, Kuriu N (1994) Proceedings of the 2nd Materials and Processing Conference (M&P’94, JSME), 940 (36): 144–145 (in Japanese) Tanimura S, Kuriu N (1994) Proceedings of the 2nd Materials and Processing Conference (M&P’94, JSME), 940 (36): 144–145 (in Japanese)
8.
go back to reference Mouro P, Gary G et al (2000) Dynamic tensile testing of sheet metal. J Phys IV France 10(PR9):149–154CrossRef Mouro P, Gary G et al (2000) Dynamic tensile testing of sheet metal. J Phys IV France 10(PR9):149–154CrossRef
9.
go back to reference Haugou G, Markiewicz E et al (2006) On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterisation. Int J Impact Eng 32(5):778–798CrossRef Haugou G, Markiewicz E et al (2006) On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterisation. Int J Impact Eng 32(5):778–798CrossRef
10.
go back to reference Albertini C, Montagnani M (1974) “Testing technique based on the split hopkinson pressure bar”, in Mechanical Properties at high rates of strain. The Institute of Physics, London Albertini C, Montagnani M (1974) “Testing technique based on the split hopkinson pressure bar”, in Mechanical Properties at high rates of strain. The Institute of Physics, London
11.
go back to reference Staab G, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235CrossRef Staab G, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235CrossRef
12.
go back to reference Ogawa K (1984) Impact-tension compression test by using a split-Hopkinson bar. Exp Mech 24(2):81–86CrossRef Ogawa K (1984) Impact-tension compression test by using a split-Hopkinson bar. Exp Mech 24(2):81–86CrossRef
13.
go back to reference Song B, Antoun BR, Connelly K, Korellis J, Lu W‐Y (2011) Improved Kolsky tension bar for high-rate tensile characterization of materials. Meas Sci Technol 22(4):045704 Song B, Antoun BR, Connelly K, Korellis J, Lu W‐Y (2011) Improved Kolsky tension bar for high-rate tensile characterization of materials. Meas Sci Technol 22(4):045704
14.
go back to reference Guzman O, Frew DJ et al (2011) A Kolsky tension bar technique using a hollow incident tube. Meas Sci Technol 22(4) Guzman O, Frew DJ et al (2011) A Kolsky tension bar technique using a hollow incident tube. Meas Sci Technol 22(4)
15.
go back to reference Huh H, Kang W et al (2002) A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Exp Mech 42(1):8–17CrossRef Huh H, Kang W et al (2002) A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Exp Mech 42(1):8–17CrossRef
16.
go back to reference Smerd R, Winkler S et al (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(1–4):541–560CrossRef Smerd R, Winkler S et al (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(1–4):541–560CrossRef
17.
go back to reference Van Slycken J, Verleysen P et al (2007) Dynamic response of aluminium containing TRIP steel and its constituent phases. Mater Sci Eng A 460–461:516–524 Van Slycken J, Verleysen P et al (2007) Dynamic response of aluminium containing TRIP steel and its constituent phases. Mater Sci Eng A 460–461:516–524
18.
go back to reference Verleysen P, Peirs J et al (2011) Effect of strain rate on the forming behaviour of sheet metals. J Mater Process Technol 211(8):1457–1464CrossRef Verleysen P, Peirs J et al (2011) Effect of strain rate on the forming behaviour of sheet metals. J Mater Process Technol 211(8):1457–1464CrossRef
19.
go back to reference Wang CY, Xia YM (2000) Validity of one-dimensional experimental principle for flat specimen in bar-bar tensile impact apparatus. Int J Solids Struct 37(24):3305–3322MATHCrossRef Wang CY, Xia YM (2000) Validity of one-dimensional experimental principle for flat specimen in bar-bar tensile impact apparatus. Int J Solids Struct 37(24):3305–3322MATHCrossRef
20.
go back to reference Li M, Wang R et al (1993) A Kolsky bar: tension, tension-tension. Exp Mech 33(1):7–14CrossRef Li M, Wang R et al (1993) A Kolsky bar: tension, tension-tension. Exp Mech 33(1):7–14CrossRef
21.
go back to reference Gerlach R, Sathianathan SK et al (2011) A novel method for pulse shaping of Split Hopkinson tensile bar signals. Int J Impact Eng 38(12):976–980CrossRef Gerlach R, Sathianathan SK et al (2011) A novel method for pulse shaping of Split Hopkinson tensile bar signals. Int J Impact Eng 38(12):976–980CrossRef
22.
go back to reference Bussac M-N, Collet P et al (2002) An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. J Mech Phys Solids 50(2):321–349MATHCrossRef Bussac M-N, Collet P et al (2002) An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. J Mech Phys Solids 50(2):321–349MATHCrossRef
23.
go back to reference Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17:213–218CrossRef Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17:213–218CrossRef
24.
go back to reference Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202CrossRef Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202CrossRef
25.
go back to reference Haugou G, Markiewicz E, Fabis J, Gary G (2004) Contribution to the definition of a partial overlapping plastic strain rates domain for moderate loadings - application to tensile testing on metallic materials. Int J Crashworthiness 9(2):187–194CrossRef Haugou G, Markiewicz E, Fabis J, Gary G (2004) Contribution to the definition of a partial overlapping plastic strain rates domain for moderate loadings - application to tensile testing on metallic materials. Int J Crashworthiness 9(2):187–194CrossRef
26.
go back to reference Rusinek A, Cheriguene R et al (2008) Dynamic behaviour of high–strength sheet steel in dynamic tension: experimental and numerical analyses. J Strain Anal Eng Des 43(1):37–53CrossRef Rusinek A, Cheriguene R et al (2008) Dynamic behaviour of high–strength sheet steel in dynamic tension: experimental and numerical analyses. J Strain Anal Eng Des 43(1):37–53CrossRef
27.
go back to reference Tanimura S, Mimura K et al (2003) New testing techniques to obtain tensile stress–strain curves for a wide range of strain rates. J Phys IV France 110:385–390CrossRef Tanimura S, Mimura K et al (2003) New testing techniques to obtain tensile stress–strain curves for a wide range of strain rates. J Phys IV France 110:385–390CrossRef
28.
go back to reference Quik M, Labibes K et al (1997) Dynamic mechanical properties of automotive thin sheet steel in tension, compression and shear. J Phys IV France 07(C3):379–384CrossRef Quik M, Labibes K et al (1997) Dynamic mechanical properties of automotive thin sheet steel in tension, compression and shear. J Phys IV France 07(C3):379–384CrossRef
29.
go back to reference Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Int J Impact Eng 34(4):784–798CrossRef Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Int J Impact Eng 34(4):784–798CrossRef
30.
go back to reference Verleysen P, Degrieck J (2004) Optical measurement of the specimen deformation at high strain rate. Exp Mech 44(3):247–252CrossRef Verleysen P, Degrieck J (2004) Optical measurement of the specimen deformation at high strain rate. Exp Mech 44(3):247–252CrossRef
31.
go back to reference Tarigopula V, Hopperstad OS et al (2008) A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int J Solids Struct 45(2):601–619MATHCrossRef Tarigopula V, Hopperstad OS et al (2008) A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int J Solids Struct 45(2):601–619MATHCrossRef
32.
go back to reference Gilat A, Schmidt T et al (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302CrossRef Gilat A, Schmidt T et al (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302CrossRef
33.
go back to reference Gary G (2005) DAVID Instruction Manual, Palaiseau, France Gary G (2005) DAVID Instruction Manual, Palaiseau, France
34.
go back to reference Zhao H, Gary G (1996) The testing and behaviour modelling of sheet metals at strain rates from 10–4 to 104 s-1. Mater Sci Eng A 207(1):46–50CrossRef Zhao H, Gary G (1996) The testing and behaviour modelling of sheet metals at strain rates from 10–4 to 104 s-1. Mater Sci Eng A 207(1):46–50CrossRef
35.
go back to reference Abaqus (2007) Reference manuals v6.8, Abaqus Inc Abaqus (2007) Reference manuals v6.8, Abaqus Inc
36.
go back to reference Dunand M, Mohr D (2010) Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int J Solids Struct 47(9):1130–1143MATHCrossRef Dunand M, Mohr D (2010) Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int J Solids Struct 47(9):1130–1143MATHCrossRef
Metadata
Title
Load-Inversion Device for the High Strain Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars
Authors
M. Dunand
G. Gary
D. Mohr
Publication date
01-09-2013
Publisher
Springer US
Published in
Experimental Mechanics / Issue 7/2013
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-013-9712-y

Other articles of this Issue 7/2013

Experimental Mechanics 7/2013 Go to the issue

Premium Partners