Skip to main content
Erschienen in: Experimental Mechanics 7/2013

01.09.2013

Load-Inversion Device for the High Strain Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars

verfasst von: M. Dunand, G. Gary, D. Mohr

Erschienen in: Experimental Mechanics | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A Digital Image Correlation (DIC) algorithm is used to determine the strain history in the specimen gage section based on high speed video imaging. Detailed finite element analysis of the experimental set-up is performed to validate the design of the load inversion device. It is shown that under the assumption of perfect alignment and slip-free attachment of the specimen, the measured stress–strain curve is free from spurious oscillations at a strain rate of 1,000 s−1. Validation experiments are carried out using tensile specimens extracted from 1.4 thick TRIP780 steel sheets. The experimental results for uniaxial tension at strain rates ranging from 200 s−1 to 1,000 s−1 confirm the oscillation-free numerical results in an approximate manner. Dynamic tension experiments are also performed on notched specimens to illustrate the validity of the proposed experimental technique for characterizing the effect of strain rate on the onset of ductile fracture in sheet materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676CrossRef
2.
Zurück zum Zitat Harding J, Wood EO et al (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96CrossRef Harding J, Wood EO et al (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96CrossRef
3.
Zurück zum Zitat Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–185CrossRef Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–185CrossRef
4.
Zurück zum Zitat Ellwood S, Griffiths LJ et al (1982) A tensile technique for materials testing at high strain rates. J Phys E Sci Instrum 15(11):1169CrossRef Ellwood S, Griffiths LJ et al (1982) A tensile technique for materials testing at high strain rates. J Phys E Sci Instrum 15(11):1169CrossRef
5.
Zurück zum Zitat Lindholm U, Yeakley L (1968) High strain-rate testing: tension and compression. Exp Mech 8(1):1–9CrossRef Lindholm U, Yeakley L (1968) High strain-rate testing: tension and compression. Exp Mech 8(1):1–9CrossRef
6.
Zurück zum Zitat Mohr D, Gary G (2007) M-shaped specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus. Exp Mech 47(5):681–692CrossRef Mohr D, Gary G (2007) M-shaped specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus. Exp Mech 47(5):681–692CrossRef
7.
Zurück zum Zitat Tanimura S, Kuriu N (1994) Proceedings of the 2nd Materials and Processing Conference (M&P’94, JSME), 940 (36): 144–145 (in Japanese) Tanimura S, Kuriu N (1994) Proceedings of the 2nd Materials and Processing Conference (M&P’94, JSME), 940 (36): 144–145 (in Japanese)
8.
Zurück zum Zitat Mouro P, Gary G et al (2000) Dynamic tensile testing of sheet metal. J Phys IV France 10(PR9):149–154CrossRef Mouro P, Gary G et al (2000) Dynamic tensile testing of sheet metal. J Phys IV France 10(PR9):149–154CrossRef
9.
Zurück zum Zitat Haugou G, Markiewicz E et al (2006) On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterisation. Int J Impact Eng 32(5):778–798CrossRef Haugou G, Markiewicz E et al (2006) On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterisation. Int J Impact Eng 32(5):778–798CrossRef
10.
Zurück zum Zitat Albertini C, Montagnani M (1974) “Testing technique based on the split hopkinson pressure bar”, in Mechanical Properties at high rates of strain. The Institute of Physics, London Albertini C, Montagnani M (1974) “Testing technique based on the split hopkinson pressure bar”, in Mechanical Properties at high rates of strain. The Institute of Physics, London
11.
Zurück zum Zitat Staab G, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235CrossRef Staab G, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235CrossRef
12.
Zurück zum Zitat Ogawa K (1984) Impact-tension compression test by using a split-Hopkinson bar. Exp Mech 24(2):81–86CrossRef Ogawa K (1984) Impact-tension compression test by using a split-Hopkinson bar. Exp Mech 24(2):81–86CrossRef
13.
Zurück zum Zitat Song B, Antoun BR, Connelly K, Korellis J, Lu W‐Y (2011) Improved Kolsky tension bar for high-rate tensile characterization of materials. Meas Sci Technol 22(4):045704 Song B, Antoun BR, Connelly K, Korellis J, Lu W‐Y (2011) Improved Kolsky tension bar for high-rate tensile characterization of materials. Meas Sci Technol 22(4):045704
14.
Zurück zum Zitat Guzman O, Frew DJ et al (2011) A Kolsky tension bar technique using a hollow incident tube. Meas Sci Technol 22(4) Guzman O, Frew DJ et al (2011) A Kolsky tension bar technique using a hollow incident tube. Meas Sci Technol 22(4)
15.
Zurück zum Zitat Huh H, Kang W et al (2002) A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Exp Mech 42(1):8–17CrossRef Huh H, Kang W et al (2002) A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Exp Mech 42(1):8–17CrossRef
16.
Zurück zum Zitat Smerd R, Winkler S et al (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(1–4):541–560CrossRef Smerd R, Winkler S et al (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(1–4):541–560CrossRef
17.
Zurück zum Zitat Van Slycken J, Verleysen P et al (2007) Dynamic response of aluminium containing TRIP steel and its constituent phases. Mater Sci Eng A 460–461:516–524 Van Slycken J, Verleysen P et al (2007) Dynamic response of aluminium containing TRIP steel and its constituent phases. Mater Sci Eng A 460–461:516–524
18.
Zurück zum Zitat Verleysen P, Peirs J et al (2011) Effect of strain rate on the forming behaviour of sheet metals. J Mater Process Technol 211(8):1457–1464CrossRef Verleysen P, Peirs J et al (2011) Effect of strain rate on the forming behaviour of sheet metals. J Mater Process Technol 211(8):1457–1464CrossRef
19.
Zurück zum Zitat Wang CY, Xia YM (2000) Validity of one-dimensional experimental principle for flat specimen in bar-bar tensile impact apparatus. Int J Solids Struct 37(24):3305–3322MATHCrossRef Wang CY, Xia YM (2000) Validity of one-dimensional experimental principle for flat specimen in bar-bar tensile impact apparatus. Int J Solids Struct 37(24):3305–3322MATHCrossRef
20.
Zurück zum Zitat Li M, Wang R et al (1993) A Kolsky bar: tension, tension-tension. Exp Mech 33(1):7–14CrossRef Li M, Wang R et al (1993) A Kolsky bar: tension, tension-tension. Exp Mech 33(1):7–14CrossRef
21.
Zurück zum Zitat Gerlach R, Sathianathan SK et al (2011) A novel method for pulse shaping of Split Hopkinson tensile bar signals. Int J Impact Eng 38(12):976–980CrossRef Gerlach R, Sathianathan SK et al (2011) A novel method for pulse shaping of Split Hopkinson tensile bar signals. Int J Impact Eng 38(12):976–980CrossRef
22.
Zurück zum Zitat Bussac M-N, Collet P et al (2002) An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. J Mech Phys Solids 50(2):321–349MATHCrossRef Bussac M-N, Collet P et al (2002) An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. J Mech Phys Solids 50(2):321–349MATHCrossRef
23.
Zurück zum Zitat Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17:213–218CrossRef Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17:213–218CrossRef
24.
Zurück zum Zitat Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202CrossRef Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202CrossRef
25.
Zurück zum Zitat Haugou G, Markiewicz E, Fabis J, Gary G (2004) Contribution to the definition of a partial overlapping plastic strain rates domain for moderate loadings - application to tensile testing on metallic materials. Int J Crashworthiness 9(2):187–194CrossRef Haugou G, Markiewicz E, Fabis J, Gary G (2004) Contribution to the definition of a partial overlapping plastic strain rates domain for moderate loadings - application to tensile testing on metallic materials. Int J Crashworthiness 9(2):187–194CrossRef
26.
Zurück zum Zitat Rusinek A, Cheriguene R et al (2008) Dynamic behaviour of high–strength sheet steel in dynamic tension: experimental and numerical analyses. J Strain Anal Eng Des 43(1):37–53CrossRef Rusinek A, Cheriguene R et al (2008) Dynamic behaviour of high–strength sheet steel in dynamic tension: experimental and numerical analyses. J Strain Anal Eng Des 43(1):37–53CrossRef
27.
Zurück zum Zitat Tanimura S, Mimura K et al (2003) New testing techniques to obtain tensile stress–strain curves for a wide range of strain rates. J Phys IV France 110:385–390CrossRef Tanimura S, Mimura K et al (2003) New testing techniques to obtain tensile stress–strain curves for a wide range of strain rates. J Phys IV France 110:385–390CrossRef
28.
Zurück zum Zitat Quik M, Labibes K et al (1997) Dynamic mechanical properties of automotive thin sheet steel in tension, compression and shear. J Phys IV France 07(C3):379–384CrossRef Quik M, Labibes K et al (1997) Dynamic mechanical properties of automotive thin sheet steel in tension, compression and shear. J Phys IV France 07(C3):379–384CrossRef
29.
Zurück zum Zitat Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Int J Impact Eng 34(4):784–798CrossRef Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Int J Impact Eng 34(4):784–798CrossRef
30.
Zurück zum Zitat Verleysen P, Degrieck J (2004) Optical measurement of the specimen deformation at high strain rate. Exp Mech 44(3):247–252CrossRef Verleysen P, Degrieck J (2004) Optical measurement of the specimen deformation at high strain rate. Exp Mech 44(3):247–252CrossRef
31.
Zurück zum Zitat Tarigopula V, Hopperstad OS et al (2008) A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int J Solids Struct 45(2):601–619MATHCrossRef Tarigopula V, Hopperstad OS et al (2008) A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int J Solids Struct 45(2):601–619MATHCrossRef
32.
Zurück zum Zitat Gilat A, Schmidt T et al (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302CrossRef Gilat A, Schmidt T et al (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302CrossRef
33.
Zurück zum Zitat Gary G (2005) DAVID Instruction Manual, Palaiseau, France Gary G (2005) DAVID Instruction Manual, Palaiseau, France
34.
Zurück zum Zitat Zhao H, Gary G (1996) The testing and behaviour modelling of sheet metals at strain rates from 10–4 to 104 s-1. Mater Sci Eng A 207(1):46–50CrossRef Zhao H, Gary G (1996) The testing and behaviour modelling of sheet metals at strain rates from 10–4 to 104 s-1. Mater Sci Eng A 207(1):46–50CrossRef
35.
Zurück zum Zitat Abaqus (2007) Reference manuals v6.8, Abaqus Inc Abaqus (2007) Reference manuals v6.8, Abaqus Inc
36.
Zurück zum Zitat Dunand M, Mohr D (2010) Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int J Solids Struct 47(9):1130–1143MATHCrossRef Dunand M, Mohr D (2010) Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int J Solids Struct 47(9):1130–1143MATHCrossRef
Metadaten
Titel
Load-Inversion Device for the High Strain Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars
verfasst von
M. Dunand
G. Gary
D. Mohr
Publikationsdatum
01.09.2013
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 7/2013
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-013-9712-y

Weitere Artikel der Ausgabe 7/2013

Experimental Mechanics 7/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.