Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

04-04-2019

Low-Complexity Massive MIMO Detectors Under Spatial Correlation and Channel Error Estimates

Authors: João Lucas Negrão, Giovanni Maciel Ferreira Silva, José Carlos Marinello Filho, Taufik Abrão

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The performance, complexity and effectiveness of various massive MIMO (M-MIMO) detectors are analyzed operating under highly spatial correlated uniform planar arrays (UPA) channels. In such context, M-MIMO systems present a considerable performance degradation and also, in some cases, an increased complexity. Considering this challenging, but realistic practical scenario, various sub-optimal M-MIMO detection structures are evaluated in terms of complexity and bit error rate (BER) performance trade-off. Specifically, the successive interference cancellation, lattice reduction (LR) and likelihood ascent search (LAS) schemes, as well as a hybrid version combining such structures with conventional linear MIMO detection techniques are comparatively investigated, aiming to improve performance. Hence, to provide a comprehensive analysis, we consider the number of antennas varying in a wide range (from conventional to massive MIMO condition), as well as low and high modulation orders, aiming to verify the potential of each MIMO detection technique according to its performance–complexity trade-off. We have also studied the correlation effect when both transmit and receiver sides are equipped with UPA antenna configurations. The BER performance is verified under different conditions, varying the array configurations, combining the detection techniques, increasing the number of antennas and/or the modulation order, especially aiming a near M-MIMO condition, i.e. up to \(64\times 64\) and \(121\times 121\) antennas has been considered. The aggregated LAS technique has demonstrated good performance in scenarios with high number of antennas, while LR and OSIC operates better in high correlated arrangements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dirk, W., Dominik, S., Joakim, J., & Gerald, M. (2011). Lattice reduction. IEEE Signal Processing Magazine, 28(3), 70–91.CrossRef Dirk, W., Dominik, S., Joakim, J., & Gerald, M. (2011). Lattice reduction. IEEE Signal Processing Magazine, 28(3), 70–91.CrossRef
2.
go back to reference Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. pp. 295–300. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. pp. 295–300.
3.
go back to reference Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.CrossRef Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.CrossRef
4.
go back to reference Rusek, F., Persson, D., Lau, B. K., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
5.
go back to reference Joakim, J. (2004). Maximum likelihood detection for the linear MIMO channel. Ph.D. Thesis, Royal Institute of Technology. Joakim, J. (2004). Maximum likelihood detection for the linear MIMO channel. Ph.D. Thesis, Royal Institute of Technology.
6.
go back to reference Barbero, L. G., & Thompson, J. S. (2008). Fixing the complexity of the sphere decoder for MIMO detection. IEEE Transactions on Wireless Communications, 7(6), 2131–2142.CrossRef Barbero, L. G., & Thompson, J. S. (2008). Fixing the complexity of the sphere decoder for MIMO detection. IEEE Transactions on Wireless Communications, 7(6), 2131–2142.CrossRef
7.
go back to reference Bohnke, R., Wubben, D., Kuhn, V., & Kammeyer, K. D. (2003). Reduced complexity MMSE detection for BLAST architectures. IEEE Global Telecommunications Conference, 4, 2258–2262.CrossRef Bohnke, R., Wubben, D., Kuhn, V., & Kammeyer, K. D. (2003). Reduced complexity MMSE detection for BLAST architectures. IEEE Global Telecommunications Conference, 4, 2258–2262.CrossRef
8.
go back to reference Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K. D. (2003). MMSE extension of V-BLAST based on sorted QR decomposition. In: VTC 2003-Fall—IEEE 58th vehicular technology conference (Vol. 1, pp. 508–512). Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K. D. (2003). MMSE extension of V-BLAST based on sorted QR decomposition. In: VTC 2003-Fall—IEEE 58th vehicular technology conference (Vol. 1, pp. 508–512).
9.
go back to reference Ambrozio, V. R., Carlos, M. J., & Taufik, A. (2014). LR-aided MIMO detectors under correlated and imperfectly estimated channels. Wireless Personal Communications, 77(1), 173–196.CrossRef Ambrozio, V. R., Carlos, M. J., & Taufik, A. (2014). LR-aided MIMO detectors under correlated and imperfectly estimated channels. Wireless Personal Communications, 77(1), 173–196.CrossRef
10.
go back to reference Ma, X., & Zhang, W. (2008). Performance analysis for MIMO systems with lattice-reduction aided linear equalization. IEEE Transactions on Communications, 56(2), 309–318.MathSciNetCrossRef Ma, X., & Zhang, W. (2008). Performance analysis for MIMO systems with lattice-reduction aided linear equalization. IEEE Transactions on Communications, 56(2), 309–318.MathSciNetCrossRef
11.
go back to reference Wubben, D., Bohnke, R., Kuuhn, V., & Kammeyer, K.-D. (2004). Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice reduction. In 2004 IEEE international conference on communications (Vol. 2, pp. 798–802). Wubben, D., Bohnke, R., Kuuhn, V., & Kammeyer, K.-D. (2004). Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice reduction. In 2004 IEEE international conference on communications (Vol. 2, pp. 798–802).
12.
go back to reference Chockalingam, A., & Rajan, B. S. (2014). Large MIMO systems. New York, NY: Cambridge University Press. Chockalingam, A., & Rajan, B. S. (2014). Large MIMO systems. New York, NY: Cambridge University Press.
13.
go back to reference Vardhan, K. V., Mohammed, S. K., Chockalingam, A., & Rajan, B. S. (2008). A low-complexity detector for large MIMO systems and multicarrier CDMA systems. IEEE Journal on Selected Areas in Communications, 26(3), 473–485.CrossRef Vardhan, K. V., Mohammed, S. K., Chockalingam, A., & Rajan, B. S. (2008). A low-complexity detector for large MIMO systems and multicarrier CDMA systems. IEEE Journal on Selected Areas in Communications, 26(3), 473–485.CrossRef
14.
go back to reference Larsson, E. G. (2009). MIMO detection methods: How they work [lecture notes]. IEEE Signal Processing Magazine, 26(3), 91–95.CrossRef Larsson, E. G. (2009). MIMO detection methods: How they work [lecture notes]. IEEE Signal Processing Magazine, 26(3), 91–95.CrossRef
15.
go back to reference Bai, L., Choi, J., & Yu, Q. (2014). Low complexity MIMO receivers. Berlin: Springer.CrossRef Bai, L., Choi, J., & Yu, Q. (2014). Low complexity MIMO receivers. Berlin: Springer.CrossRef
16.
go back to reference Tadashi, K. R., Fernando, C., & Taufik, A. (2015). Efficient near-optimum detectors for large MIMO systems under correlated channels. Wireless Personal Communications, 83(2), 1287–1311.CrossRef Tadashi, K. R., Fernando, C., & Taufik, A. (2015). Efficient near-optimum detectors for large MIMO systems under correlated channels. Wireless Personal Communications, 83(2), 1287–1311.CrossRef
17.
go back to reference Soo, C. Y., Jaekwon, K., Young, Y. W., & Kang Chung, G. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley Publishing. Soo, C. Y., Jaekwon, K., Young, Y. W., & Kang Chung, G. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley Publishing.
18.
go back to reference Andrea, G. (2005). Wireless communications. New York, NY: Cambridge University Press. Andrea, G. (2005). Wireless communications. New York, NY: Cambridge University Press.
19.
go back to reference Van Zelst, A., & Hammerschmidt, J. S. (2002). A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In Proceedings of URSI general assembly (pp. 17–24). Van Zelst, A., & Hammerschmidt, J. S. (2002). A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In Proceedings of URSI general assembly (pp. 17–24).
20.
go back to reference Balanis, C. A. (2005). Antenna theory: Analysis and design. New York: Wiley-Interscience. Balanis, C. A. (2005). Antenna theory: Analysis and design. New York: Wiley-Interscience.
21.
go back to reference Levin, G., & Loyka, S. (2010). On capacity-maximizing angular densities of multipath in MIMO channels. In 2010 IEEE 72nd vehicular technology conference—Fall (pp. 1–5). Levin, G., & Loyka, S. (2010). On capacity-maximizing angular densities of multipath in MIMO channels. In 2010 IEEE 72nd vehicular technology conference—Fall (pp. 1–5).
22.
go back to reference Li, J., Su, X., & Zeng, J., et al. (2013). Codebook design for uniform rectangular arrays of massive antennas. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5). Li, J., Su, X., & Zeng, J., et al. (2013). Codebook design for uniform rectangular arrays of massive antennas. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).
23.
go back to reference Boroujerdi, M. N., Haghighatshoar, S., & Caire, G. (2018). Low-complexity statistically robust precoder/detector computation for massive MIMO systems. IEEE Transactions on Wireless Communications, 17(10), 6516–6530.CrossRef Boroujerdi, M. N., Haghighatshoar, S., & Caire, G. (2018). Low-complexity statistically robust precoder/detector computation for massive MIMO systems. IEEE Transactions on Wireless Communications, 17(10), 6516–6530.CrossRef
24.
go back to reference Tadashi, K. R., & Taufik, A. (2016). Ordered MMSE–SIC via sorted QR decomposition in ill conditioned large-scale MIMO channels. Telecommunication Systems, 63(2), 335–346.CrossRef Tadashi, K. R., & Taufik, A. (2016). Ordered MMSE–SIC via sorted QR decomposition in ill conditioned large-scale MIMO channels. Telecommunication Systems, 63(2), 335–346.CrossRef
25.
go back to reference Lenstra, A. K., Lenstra, H. W., & Lovász, L. (1982). Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 515–534.MathSciNetCrossRefMATH Lenstra, A. K., Lenstra, H. W., & Lovász, L. (1982). Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 515–534.MathSciNetCrossRefMATH
26.
go back to reference Milford, D., & Sandell, M. (2011). Simplified quantisation in a reduced-lattice MIMO decoder. IEEE Communications Letters, 15(7), 725–727.CrossRef Milford, D., & Sandell, M. (2011). Simplified quantisation in a reduced-lattice MIMO decoder. IEEE Communications Letters, 15(7), 725–727.CrossRef
27.
go back to reference Mohammed, S. K., Chockalingam, A., & Rajan, B. S. (2008). A low-complexity near-ML performance achieving algorithm for large MIMO detection. In ISIT 2008, Toronto, Canada, July 6–11 (pp. 2012–2016). Mohammed, S. K., Chockalingam, A., & Rajan, B. S. (2008). A low-complexity near-ML performance achieving algorithm for large MIMO detection. In ISIT 2008, Toronto, Canada, July 6–11 (pp. 2012–2016).
28.
go back to reference Ferreira Silva, G. M., Marinello Filho, J. C., & Abrao, T. (2018). Sequential likelihood ascent search detector for massive MIMO systems. AEU - International Journal of Electronics and Communications, 96(1), 30–39.CrossRef Ferreira Silva, G. M., Marinello Filho, J. C., & Abrao, T. (2018). Sequential likelihood ascent search detector for massive MIMO systems. AEU - International Journal of Electronics and Communications, 96(1), 30–39.CrossRef
29.
go back to reference Golub Gene, H., & Van Loan Charles, F. (1996). Matrix computations (3rd ed.). Baltimore: JH Univ. Press.MATH Golub Gene, H., & Van Loan Charles, F. (1996). Matrix computations (3rd ed.). Baltimore: JH Univ. Press.MATH
30.
go back to reference Ling, C., & Howgrave-Graham, N. (2007). Effective LLL reduction for lattice decoding. In 2007 IEEE international symposium on information theory (pp. 196–200). Ling, C., & Howgrave-Graham, N. (2007). Effective LLL reduction for lattice decoding. In 2007 IEEE international symposium on information theory (pp. 196–200).
Metadata
Title
Low-Complexity Massive MIMO Detectors Under Spatial Correlation and Channel Error Estimates
Authors
João Lucas Negrão
Giovanni Maciel Ferreira Silva
José Carlos Marinello Filho
Taufik Abrão
Publication date
04-04-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06320-2

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue