Skip to main content
Top
Published in: Microsystem Technologies 5/2019

10-03-2018 | Technical Paper

Low-phase-noise self-sustaining amplifier IC with parallel capacitance cancellation for low-Q piezoelectric resonator

Authors: Hyungseup Kim, Byeoncheol Lee, Youngwoon Ko, Yeongjin Mun, Yi-Gyeong Kim, Hyunjoong Lee, Hyoungho Ko

Published in: Microsystem Technologies | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a low-phase-noise self-sustaining amplifier IC with parallel capacitance cancellation for low-Q piezoelectric resonator is presented. The target of the proposed low-phase-noise self-sustaining amplifier IC is a mass-sensitive oscillator based on an AlN piezoelectric nanoresonator in liquid media. The behavioral model of the AlN piezoelectric nanoresonator is modeled as a damped second-order mass-spring-damper system with Verilog-A. The Verilog-A model enables the co-simulation of the oscillator nanosystem including the electronic sustaining amplifier circuit and the piezoelectric nanoresonator. The sustaining amplifier consists of two parts: transimpedance amplifier and shunt-capacitance cancelling amplifier. The shunt-capacitance cancellation and self-sustaining oscillation are critical in low-Q resonators, such as a mass sensor in liquid media. The shunt-capacitance-cancelling amplifier, which is a parasitic capacitance-canceller, supplies an inverted driving voltage to the nanoresonator to remove the wrong oscillation condition arising from the capacitance parallel to the nanoresonator. Near the resonant frequency, the motional inductance and motional capacitance of the nanoresonator are mutually cancelled, and the motional resistance are converted to the output voltage of the transimpedance amplifier. To remove the unwanted high-frequency poles, the amplifiers are designed using an inverter-based high-speed architecture with a 3 GHz gain-bandwidth product. In this oscillator system, when the target mass is attached to the nanoresonator, the inductance is increased; thus, the oscillation frequency is decreased. The operation of the full nanosystem is modeled and simulated using the Verilog-A behavioral model. The nominal output frequency is 5 MHz. The power consumption is 5 mA with 1.8 V supply voltage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arcamone J, Colinet E, Niel A, Er Ollier (2010) Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances. Appl Phys Lett 97:043505.1–043505.3CrossRef Arcamone J, Colinet E, Niel A, Er Ollier (2010) Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances. Appl Phys Lett 97:043505.1–043505.3CrossRef
go back to reference Bedair SS, Fedder GK (2004) CMOS MEMS oscillator for gas chemical detection. In: Proceedings of IEEE SENSORS, pp 955–958 Bedair SS, Fedder GK (2004) CMOS MEMS oscillator for gas chemical detection. In: Proceedings of IEEE SENSORS, pp 955–958
go back to reference Blom FR, Bouwstra S, Elwenspoek M, Fluitman JH (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol 10:19–26CrossRef Blom FR, Bouwstra S, Elwenspoek M, Fluitman JH (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol 10:19–26CrossRef
go back to reference Dye DW (1925) The piezo-electric quartz resonator and its equivalent electrical circuit. Proc Phys Soc Lond 38:399–458CrossRef Dye DW (1925) The piezo-electric quartz resonator and its equivalent electrical circuit. Proc Phys Soc Lond 38:399–458CrossRef
go back to reference Ekinci KL, Huang MH, Roukes ML (2004a) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84:4469–4471CrossRef Ekinci KL, Huang MH, Roukes ML (2004a) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84:4469–4471CrossRef
go back to reference Ekinci KL, Yang YT, Roukes ML (2004b) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 95:2682–2689CrossRef Ekinci KL, Yang YT, Roukes ML (2004b) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 95:2682–2689CrossRef
go back to reference Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296CrossRef Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296CrossRef
go back to reference Hagleitner C, Lange D, Hierlemann A, Brand O, Baltes Henry (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J Solid State Circuits 37:1867–1878CrossRef Hagleitner C, Lange D, Hierlemann A, Brand O, Baltes Henry (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J Solid State Circuits 37:1867–1878CrossRef
go back to reference Hammond JM, Lec RM, Zhang XJ, Libby DG, Prager LA (1997) An acoustic automotive engine oil quality sensor. In: Proceedings of the 1997 IEEE International Frequency Control Symposium, pp 72–80 Hammond JM, Lec RM, Zhang XJ, Libby DG, Prager LA (1997) An acoustic automotive engine oil quality sensor. In: Proceedings of the 1997 IEEE International Frequency Control Symposium, pp 72–80
go back to reference Ikehara T, Lu J, Konno M, Maeda R, Mihara T (2007) A high quality-factor silicon cantilever for a low detection-limit resonant mass sensor operated in air. J Micromech Microeng 17:2491–2494CrossRef Ikehara T, Lu J, Konno M, Maeda R, Mihara T (2007) A high quality-factor silicon cantilever for a low detection-limit resonant mass sensor operated in air. J Micromech Microeng 17:2491–2494CrossRef
go back to reference Johnston LJ, Kymissis I, Shepard KL (2010) FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sens J 10:1042–1047CrossRef Johnston LJ, Kymissis I, Shepard KL (2010) FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sens J 10:1042–1047CrossRef
go back to reference Kobayashi N, Li YJ, Naitoh Y, Kageshima M, Sugawara Y (2010) High force sensitivity in Q-controlled phase-modulation atomic force microscopy. Appl Phys Lett 97:011906.1–011906.3 Kobayashi N, Li YJ, Naitoh Y, Kageshima M, Sugawara Y (2010) High force sensitivity in Q-controlled phase-modulation atomic force microscopy. Appl Phys Lett 97:011906.1–011906.3
go back to reference Kucera M, Manzaneque T, Sanchez-Rojas JL, Bittner A, Schmid U (2013) Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop. J Micromech Microeng 23:1–8CrossRef Kucera M, Manzaneque T, Sanchez-Rojas JL, Bittner A, Schmid U (2013) Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop. J Micromech Microeng 23:1–8CrossRef
go back to reference Lee JEY, Seshia AA (2009) Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators. Sens Actuators A Phys 156:36–42CrossRef Lee JEY, Seshia AA (2009) Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators. Sens Actuators A Phys 156:36–42CrossRef
go back to reference Li Y, Vancura C, Kirstein KU, Lichtenberg J, Hierlemann A (2008) Monolithic resonant-cantilever-based CMOS microsystem for biochemical sensing. IEEE Trans Circuits Syst I 55:2551–2560MathSciNetCrossRef Li Y, Vancura C, Kirstein KU, Lichtenberg J, Hierlemann A (2008) Monolithic resonant-cantilever-based CMOS microsystem for biochemical sensing. IEEE Trans Circuits Syst I 55:2551–2560MathSciNetCrossRef
go back to reference Li MH, Chen CY, Li CS, Chin CH, Chen CC, Li SS (2013) Foundry-CMOS Integrated Oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators. In: 2013 IEEE international electron devices meeting (IEDM), pp 18.4.1–18.4.4 Li MH, Chen CY, Li CS, Chin CH, Chen CC, Li SS (2013) Foundry-CMOS Integrated Oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators. In: 2013 IEEE international electron devices meeting (IEDM), pp 18.4.1–18.4.4
go back to reference Lin YW, Lee S, Li SS, Xie Y, Ren Z, Nguyen CTC (2004) Series-resonant VHF micromechanical resonator reference oscillators. IEEE J Solid State Circuits 39:2477–2491CrossRef Lin YW, Lee S, Li SS, Xie Y, Ren Z, Nguyen CTC (2004) Series-resonant VHF micromechanical resonator reference oscillators. IEEE J Solid State Circuits 39:2477–2491CrossRef
go back to reference Mahameed R, Abdelmoneum M, Duarte D, Taylor G, Choi SJ, Brain R, Morrow P, Fischer P (2013) Fully monolithic MEMS based thermal sensor in 22 nm CMOS technology for SoC thermal management. In: 2013 transducers & eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), pp 734–737 Mahameed R, Abdelmoneum M, Duarte D, Taylor G, Choi SJ, Brain R, Morrow P, Fischer P (2013) Fully monolithic MEMS based thermal sensor in 22 nm CMOS technology for SoC thermal management. In: 2013 transducers & eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), pp 734–737
go back to reference Manzaneque T, Hernando-Garcia J, Ababneh A, Seidel H, Sokmen U, Peiner E, Schmid U, Samchez-Rojas JL (2010) Quality factor enhancement in AlN-actuated MEMS by velocity feedback loop. Procedia Eng 5:1494–1497CrossRef Manzaneque T, Hernando-Garcia J, Ababneh A, Seidel H, Sokmen U, Peiner E, Schmid U, Samchez-Rojas JL (2010) Quality factor enhancement in AlN-actuated MEMS by velocity feedback loop. Procedia Eng 5:1494–1497CrossRef
go back to reference Manzaneque T, Hernando-Garcia J, Ababneh A, Schwarz P, Seidel H, Schmid U, Sanchez-Rojas JL (2011) Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop. J Micromech Microeng 21:1–9CrossRef Manzaneque T, Hernando-Garcia J, Ababneh A, Schwarz P, Seidel H, Schmid U, Sanchez-Rojas JL (2011) Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop. J Micromech Microeng 21:1–9CrossRef
go back to reference Marigo E, Verd J, Lopez JL, Uranga A, Barniol N (2013) Packaged CMOS–MEMS free–free beam oscillator. J Micromech Microeng 23:1–10CrossRef Marigo E, Verd J, Lopez JL, Uranga A, Barniol N (2013) Packaged CMOS–MEMS free–free beam oscillator. J Micromech Microeng 23:1–10CrossRef
go back to reference Mumith JA, Makatsoris C, Karayiannis TG (2014) Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing: a thermoacoustic device for heat recovery. Appl Therm Eng 65:588–596CrossRef Mumith JA, Makatsoris C, Karayiannis TG (2014) Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing: a thermoacoustic device for heat recovery. Appl Therm Eng 65:588–596CrossRef
go back to reference Munoz-Contreras F, Verd J, Segura J, Uranga A, Riverola M, Barniol N (2013) Torwards a fully-integrated CMOS microcalorimeter with on-chip quasi-digital output signal. In: Proceedings of IEEE SENSORS, pp 1–4 Munoz-Contreras F, Verd J, Segura J, Uranga A, Riverola M, Barniol N (2013) Torwards a fully-integrated CMOS microcalorimeter with on-chip quasi-digital output signal. In: Proceedings of IEEE SENSORS, pp 1–4
go back to reference Tamayo J, Humphris ADL, Malloy AM, Miles MJ (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86:167–173CrossRef Tamayo J, Humphris ADL, Malloy AM, Miles MJ (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86:167–173CrossRef
go back to reference Vazquez J, Ma Rivera, Hernando J, Sanchez-Rojas JL (2009) Dynamic response of low aspect ratio piezoelectric microcantilevers actuated in different liquid environments. J Micromech Microeng 19:1–9CrossRef Vazquez J, Ma Rivera, Hernando J, Sanchez-Rojas JL (2009) Dynamic response of low aspect ratio piezoelectric microcantilevers actuated in different liquid environments. J Micromech Microeng 19:1–9CrossRef
go back to reference Vemuri SK (2000) Behavioral modeling of viscous damping in MEMS. Carnegie Mellon University, Pittsburgh Vemuri SK (2000) Behavioral modeling of viscous damping in MEMS. Carnegie Mellon University, Pittsburgh
go back to reference Verd J, Sansa M, Uranga A, Pey C, Abadal G, Perez-Murano F, Barniol N (2009) Monolithic CMOS-MEMS oscillators with micro-degree temperature resolution in air conditions. In: TRANSDICERS 2009, international solid-state sensors, actuators and microsystems conference, pp 2429–2432 Verd J, Sansa M, Uranga A, Pey C, Abadal G, Perez-Murano F, Barniol N (2009) Monolithic CMOS-MEMS oscillators with micro-degree temperature resolution in air conditions. In: TRANSDICERS 2009, international solid-state sensors, actuators and microsystems conference, pp 2429–2432
go back to reference Vignola JF, Judge JA, Jarzynski J, Zalalutdinov M, Houston BH, Baldwin JW (2006) Effect of viscous loss on mechanical resonators designed for mass detection. Appl Phys Lett 88:041921.1–041921.3CrossRef Vignola JF, Judge JA, Jarzynski J, Zalalutdinov M, Houston BH, Baldwin JW (2006) Effect of viscous loss on mechanical resonators designed for mass detection. Appl Phys Lett 88:041921.1–041921.3CrossRef
go back to reference Wojciechowski KE, Olsson RH, Tuck MR, Roherty-Osmun E, Hill TA (2009) Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators. In: TRANSDICERS 2009, international solid-state sensors, actuators and microsystems conference, pp 2126–2130 Wojciechowski KE, Olsson RH, Tuck MR, Roherty-Osmun E, Hill TA (2009) Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators. In: TRANSDICERS 2009, international solid-state sensors, actuators and microsystems conference, pp 2126–2130
go back to reference Xu Y, Lee EY (2012) Single-Device and on-chip feedthrough cancellation for hybrid MEMS resonators. IEEE Trans Ind Electron 59:4930–4937CrossRef Xu Y, Lee EY (2012) Single-Device and on-chip feedthrough cancellation for hybrid MEMS resonators. IEEE Trans Ind Electron 59:4930–4937CrossRef
go back to reference Zhang Fei, Liu Xiaoyu, Hackworth SA, Sclabassi RJ, Sun M (2009) Wireless energy delivery and data communication for biomedical sensors and implantable devices. In: 2009 IEEE 35th annual northeast bioengineering conference, pp 1–2 Zhang Fei, Liu Xiaoyu, Hackworth SA, Sclabassi RJ, Sun M (2009) Wireless energy delivery and data communication for biomedical sensors and implantable devices. In: 2009 IEEE 35th annual northeast bioengineering conference, pp 1–2
Metadata
Title
Low-phase-noise self-sustaining amplifier IC with parallel capacitance cancellation for low-Q piezoelectric resonator
Authors
Hyungseup Kim
Byeoncheol Lee
Youngwoon Ko
Yeongjin Mun
Yi-Gyeong Kim
Hyunjoong Lee
Hyoungho Ko
Publication date
10-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 5/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3830-5

Other articles of this Issue 5/2019

Microsystem Technologies 5/2019 Go to the issue