Skip to main content
Top
Published in: Photonic Network Communications 3/2022

11-06-2022 | Original Paper

Low-power all-optical switch based on slow light photonic crystal

Published in: Photonic Network Communications | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, an optical switch based on two-dimensional photonic crystals is presented for the slow light regime. This regime enhances light–matter interaction and can be used to design low-power all-optical devices. Due to slow light properties in photonic crystals, the maximum flat band for the group index of 8 was obtained. The threshold light intensity was reduced to 16 mW/µm2 in comparison with other works. The maximum rise and fall times were calculated about 1 ps, which means the switching frequency is about 1 THz. The total footprint of the proposed switch is 5.5 × 9 µm2, which makes the possibility for optical integration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao, Y., Zhao, H.W., Zhang, X., Yuan, Y., Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41(5), 517–525 (2009)CrossRef Zhao, Y., Zhao, H.W., Zhang, X., Yuan, Y., Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41(5), 517–525 (2009)CrossRef
2.
go back to reference Krauss, T.F.: Why do we need slow light. Nat. Photon. 2(8), 448–450 (2008)CrossRef Krauss, T.F.: Why do we need slow light. Nat. Photon. 2(8), 448–450 (2008)CrossRef
3.
go back to reference Khurgin, J.B., Tucker, R.S.: Slow Light: Science and Applications, 2nd edn. CRC Press, Boca Raton (2008)CrossRef Khurgin, J.B., Tucker, R.S.: Slow Light: Science and Applications, 2nd edn. CRC Press, Boca Raton (2008)CrossRef
4.
go back to reference Mortensen, N.A., Xiao, S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108-1-141108–3 (2007)CrossRef Mortensen, N.A., Xiao, S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108-1-141108–3 (2007)CrossRef
5.
go back to reference Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010)CrossRef Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010)CrossRef
6.
go back to reference Wu, J., Li, Y., Peng, C., Wang, Z.Y.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283(14), 2815–2819 (2010)CrossRef Wu, J., Li, Y., Peng, C., Wang, Z.Y.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283(14), 2815–2819 (2010)CrossRef
7.
go back to reference Digonnet, M., Wen, H., Terrel, M.A., Fan, Sh.: Slow light in fiber sensors. Proc. SPIE Int. Soc. Opt. Eng. 8273, 82730W (2012) Digonnet, M., Wen, H., Terrel, M.A., Fan, Sh.: Slow light in fiber sensors. Proc. SPIE Int. Soc. Opt. Eng. 8273, 82730W (2012)
8.
go back to reference Chahal, M., Celler, G.K., Jaluria, Y., Jiang, W.: Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform. Opt. Express. 20(4), 4225–4231 (2012)CrossRef Chahal, M., Celler, G.K., Jaluria, Y., Jiang, W.: Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform. Opt. Express. 20(4), 4225–4231 (2012)CrossRef
9.
go back to reference Zadok, A., Eyal, A., Tur, M.: Stimulated brillouin scattering slow light in optical fibers. Appl. Opt. 50(25), E38–E49 (2011)CrossRef Zadok, A., Eyal, A., Tur, M.: Stimulated brillouin scattering slow light in optical fibers. Appl. Opt. 50(25), E38–E49 (2011)CrossRef
10.
go back to reference Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)CrossRef Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)CrossRef
11.
go back to reference Zhu, Zh., Dawes, A.M.C., Gauthier, D.J., Zhang, L., Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 25(1), 201–206 (2007)CrossRef Zhu, Zh., Dawes, A.M.C., Gauthier, D.J., Zhang, L., Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 25(1), 201–206 (2007)CrossRef
12.
go back to reference Qin, G.S., Jose, R., Ohishi, Y.: Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(9), 093109-1-093109–5 (2007)CrossRef Qin, G.S., Jose, R., Ohishi, Y.: Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(9), 093109-1-093109–5 (2007)CrossRef
13.
go back to reference Totsuka, K., Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E. 75(1pt2), 016610-1-016610–5 (2007) Totsuka, K., Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E. 75(1pt2), 016610-1-016610–5 (2007)
14.
go back to reference Zhao, Y., Zhang, Y., Wang, Q., Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14(3), 407–426 (2015)CrossRef Zhao, Y., Zhang, Y., Wang, Q., Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14(3), 407–426 (2015)CrossRef
15.
go back to reference Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007)CrossRef Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007)CrossRef
16.
go back to reference Dai, L., Jiang, C.: Low dispersion slow light waveguide with high coupling efficiency. J. Phys. D Appl. Phys. 42(22), 225102-1-225102–6 (2009)CrossRef Dai, L., Jiang, C.: Low dispersion slow light waveguide with high coupling efficiency. J. Phys. D Appl. Phys. 42(22), 225102-1-225102–6 (2009)CrossRef
17.
go back to reference Kuramochi, E., Notomi, M., Hughes, S., Shinya, A., Watanabe, T., Ramunno, L.: Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318-1-161318–4 (2005)CrossRef Kuramochi, E., Notomi, M., Hughes, S., Shinya, A., Watanabe, T., Ramunno, L.: Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318-1-161318–4 (2005)CrossRef
18.
go back to reference Li, J., White, T.P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T.F.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Exp. 16(9), 6227–6232 (2008)CrossRef Li, J., White, T.P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T.F.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Exp. 16(9), 6227–6232 (2008)CrossRef
19.
go back to reference Tian, H.P., Zhai, J., Ji, Y.F.: Flat band slow light performance in dual-slot silicon-on insulator based photonic crystal waveguide. Jpn. J. Appl. Phys. 52(3), 032001-1-032001–5 (2013) Tian, H.P., Zhai, J., Ji, Y.F.: Flat band slow light performance in dual-slot silicon-on insulator based photonic crystal waveguide. Jpn. J. Appl. Phys. 52(3), 032001-1-032001–5 (2013)
20.
go back to reference Aghababaeian, H., Vadjed-Samiei, M.H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15(4), 398–402 (2011)CrossRef Aghababaeian, H., Vadjed-Samiei, M.H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15(4), 398–402 (2011)CrossRef
21.
go back to reference Hao, R., Cassan, E., Le Roux, X., Gao, D., Do Khanh, V., Vivien, L., Marris-Morini, D., Zhang, X.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Exp. 18(16), 16309–16319 (2010)CrossRef Hao, R., Cassan, E., Le Roux, X., Gao, D., Do Khanh, V., Vivien, L., Marris-Morini, D., Zhang, X.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Exp. 18(16), 16309–16319 (2010)CrossRef
22.
go back to reference Caer, C., Le Roux, X., Do Khanh, V., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011)CrossRef Caer, C., Le Roux, X., Do Khanh, V., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011)CrossRef
23.
go back to reference Pourmand, M., Karimkhani, A., Moravvej-Farshi, M.K.: Slow light photonic crystal waveguides with large delay-bandwidth product. Opt. Eng. 55(12), 123108 (2016)CrossRef Pourmand, M., Karimkhani, A., Moravvej-Farshi, M.K.: Slow light photonic crystal waveguides with large delay-bandwidth product. Opt. Eng. 55(12), 123108 (2016)CrossRef
24.
go back to reference Long, F., Tian, H., Ji, Y.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightw. Technol. 28(8), 1139–1143 (2010)CrossRef Long, F., Tian, H., Ji, Y.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightw. Technol. 28(8), 1139–1143 (2010)CrossRef
25.
go back to reference Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightw. Technol. 32(18), 3126–3131 (2014)CrossRef Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightw. Technol. 32(18), 3126–3131 (2014)CrossRef
26.
go back to reference Ghadrdan, M., Mansouri-Birjandi, M.A.: Implementation of all-optical switch based on nonlinear photonic crystal ring resonator with embedding metallic nanowires in the ring resonators. Opt. Quantum Electron. 48(5), 299 (2016)CrossRef Ghadrdan, M., Mansouri-Birjandi, M.A.: Implementation of all-optical switch based on nonlinear photonic crystal ring resonator with embedding metallic nanowires in the ring resonators. Opt. Quantum Electron. 48(5), 299 (2016)CrossRef
27.
go back to reference Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2008)CrossRef Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2008)CrossRef
28.
go back to reference Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik 130, 1214–1221 (2017)MATHCrossRef Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik 130, 1214–1221 (2017)MATHCrossRef
29.
go back to reference Daghooghi, T., Soroosh, M., Ansari-Asl, K.: Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57(9), 2250–2257 (2018)CrossRef Daghooghi, T., Soroosh, M., Ansari-Asl, K.: Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57(9), 2250–2257 (2018)CrossRef
30.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017)CrossRef
31.
go back to reference Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127(8), 3955–3958 (2016)CrossRef Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127(8), 3955–3958 (2016)CrossRef
32.
go back to reference Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018)CrossRef Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018)CrossRef
33.
go back to reference O’Faolain, L., White, T.P., O’Brien, D., Yuan, X., Settle, M.D., Krauss, T.F.: Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Exp. 15(20), 13129–13138 (2007)CrossRef O’Faolain, L., White, T.P., O’Brien, D., Yuan, X., Settle, M.D., Krauss, T.F.: Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Exp. 15(20), 13129–13138 (2007)CrossRef
34.
go back to reference Beggs, D.M., O’Faolain, L., Krauss, T.F.: Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photon. Nanostruct. 6(3–4), 213–218 (2008)CrossRef Beggs, D.M., O’Faolain, L., Krauss, T.F.: Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photon. Nanostruct. 6(3–4), 213–218 (2008)CrossRef
35.
go back to reference Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013)CrossRef Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013)CrossRef
36.
go back to reference Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999)CrossRef Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999)CrossRef
37.
go back to reference Bahadori-Haghighi, Sh., Ghayour, R.: Optical self-phase modulation using a new photon crystal coupled-cavity waveguide. Opt. Appl. XLIV(1), 29–38 (2014) Bahadori-Haghighi, Sh., Ghayour, R.: Optical self-phase modulation using a new photon crystal coupled-cavity waveguide. Opt. Appl. XLIV(1), 29–38 (2014)
38.
go back to reference Barrios, C.A.: High-performance all-optical silicon micro switch. Electron. Lett. 40(14), 862–863 (2004)CrossRef Barrios, C.A.: High-performance all-optical silicon micro switch. Electron. Lett. 40(14), 862–863 (2004)CrossRef
39.
go back to reference Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)CrossRef Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)CrossRef
40.
go back to reference Abedi, K., Mirjalili, S.M.: Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt. Commun. 339, 7–13 (2015)CrossRef Abedi, K., Mirjalili, S.M.: Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt. Commun. 339, 7–13 (2015)CrossRef
41.
go back to reference Frandsen, L., Lavrinenko, A.V., Fage-Pedersen, J., Borel, P.I.: Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006)CrossRef Frandsen, L., Lavrinenko, A.V., Fage-Pedersen, J., Borel, P.I.: Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006)CrossRef
42.
go back to reference Wang, D., Zhang, J., Yuan, L., Lei, J., Chen, S., Han, J., Hou, Sh.: Slow light engineering in poly atomic photonic crystal waveguides based on square lattice. Opt. Commun. 284(24), 5829–5832 (2011)CrossRef Wang, D., Zhang, J., Yuan, L., Lei, J., Chen, S., Han, J., Hou, Sh.: Slow light engineering in poly atomic photonic crystal waveguides based on square lattice. Opt. Commun. 284(24), 5829–5832 (2011)CrossRef
43.
go back to reference Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hallow waveguides. Opt. Lett. 25(5), 335–337 (2000)CrossRef Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hallow waveguides. Opt. Lett. 25(5), 335–337 (2000)CrossRef
44.
go back to reference Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004)CrossRef Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004)CrossRef
45.
go back to reference Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007)CrossRef Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007)CrossRef
46.
go back to reference Sullivan, D.M.: Electromagnetic Simulation Using the FTDT Method. IEEE Press, Hoboken (2013)CrossRef Sullivan, D.M.: Electromagnetic Simulation Using the FTDT Method. IEEE Press, Hoboken (2013)CrossRef
47.
go back to reference Tay, T.T., Mareels, I., Moore, J.B.: High Performance Control. Birkhäuser, Boston (1997)MATH Tay, T.T., Mareels, I., Moore, J.B.: High Performance Control. Birkhäuser, Boston (1997)MATH
48.
go back to reference Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(3), 335–341 (2018)CrossRef Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(3), 335–341 (2018)CrossRef
49.
go back to reference Khosravi, Sh., Zavvari, M.: Design and analysis of integrated all-optical 2×4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35(1), 122–128 (2018)CrossRef Khosravi, Sh., Zavvari, M.: Design and analysis of integrated all-optical 2×4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35(1), 122–128 (2018)CrossRef
50.
go back to reference Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017)MathSciNetCrossRef Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017)MathSciNetCrossRef
Metadata
Title
Low-power all-optical switch based on slow light photonic crystal
Publication date
11-06-2022
Published in
Photonic Network Communications / Issue 3/2022
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00977-9

Other articles of this Issue 3/2022

Photonic Network Communications 3/2022 Go to the issue