Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2017

11-05-2017

Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

Authors: Farzin Azimpour Shishevan, Hamid Akbulut, M. A. Mohtadi-Bonab

Published in: Journal of Materials Engineering and Performance | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Carmisciano, I.M.D. Rosa, F. Sarasini, A. Tamburrano, and M. Valente, Basalt Woven Fiber Reinforced Vinylester Composites: Flexural and Electrical Properties, Mater. Des., 2011, 32, p 337–342CrossRef S. Carmisciano, I.M.D. Rosa, F. Sarasini, A. Tamburrano, and M. Valente, Basalt Woven Fiber Reinforced Vinylester Composites: Flexural and Electrical Properties, Mater. Des., 2011, 32, p 337–342CrossRef
2.
go back to reference L.X. Zhong, S.Y. Fu, X.S. Zhou, and H.Y. Zhan, Effect of Surface Microfibrillation of Sisal Fibre on the Mechanical Properties of Sisal/Aramid Fibre Hybrid Composites, Compos. Part A Appl. Sci., 2011, 4, p 244–252CrossRef L.X. Zhong, S.Y. Fu, X.S. Zhou, and H.Y. Zhan, Effect of Surface Microfibrillation of Sisal Fibre on the Mechanical Properties of Sisal/Aramid Fibre Hybrid Composites, Compos. Part A Appl. Sci., 2011, 4, p 244–252CrossRef
3.
go back to reference V. Fiore, G.D. Bella, and A. Valenza, Glass-Basalt/Epoxy Hybrid Composites for Marine Applications, Mater. Des., 2011, 32, p 2091–2099CrossRef V. Fiore, G.D. Bella, and A. Valenza, Glass-Basalt/Epoxy Hybrid Composites for Marine Applications, Mater. Des., 2011, 32, p 2091–2099CrossRef
4.
go back to reference E. Quagliarini, F. Monnia, S. Lencia, and F. Bondioli, Tensile Characterization of Basalt Fiber Rods and Ropes: A First Contribution, Constr. Build. Mater., 2012, 34, p 372–380CrossRef E. Quagliarini, F. Monnia, S. Lencia, and F. Bondioli, Tensile Characterization of Basalt Fiber Rods and Ropes: A First Contribution, Constr. Build. Mater., 2012, 34, p 372–380CrossRef
5.
go back to reference E.E. Mcconnell, O. Kamstup, R. Musselman, T.W. Hesterberg, J. Chevalier, and W.C. Miller, Chronic Inhalation Study of Size-Separated Rock and Slag Wool Insulation Fibers in Fischer 344/N Rats, Inhal. Toxicol., 1994, 6, p 571–614CrossRef E.E. Mcconnell, O. Kamstup, R. Musselman, T.W. Hesterberg, J. Chevalier, and W.C. Miller, Chronic Inhalation Study of Size-Separated Rock and Slag Wool Insulation Fibers in Fischer 344/N Rats, Inhal. Toxicol., 1994, 6, p 571–614CrossRef
6.
go back to reference B. Wei, H. Cao, and S. Song, Tensile Behavior Contrast of Basalt and Glass Fibers After Chemical Treatment, Mater. Des., 2010, 31, p 4244–4250CrossRef B. Wei, H. Cao, and S. Song, Tensile Behavior Contrast of Basalt and Glass Fibers After Chemical Treatment, Mater. Des., 2010, 31, p 4244–4250CrossRef
7.
go back to reference M. Berozashvili, Continuous Reinforcing Fibers are Being Offered for Construction, Civil Engineering and Other Composites Applications, Adv. Compos. Mater, 2001, 21, p 5–6 M. Berozashvili, Continuous Reinforcing Fibers are Being Offered for Construction, Civil Engineering and Other Composites Applications, Adv. Compos. Mater, 2001, 21, p 5–6
8.
go back to reference C. Schefflera, T. Förster, E. Mäder, G. Heinrich, S. Hempel, and V. Mechtcherine, Aging of Alkali-Resistant Glass and Basalt Fibers in Alkaline Solutions: Evaluation of the Failure Stress by Weibull Distribution Function, J. Non-Cryst. Solids, 2009, 355, p 2588–2595CrossRef C. Schefflera, T. Förster, E. Mäder, G. Heinrich, S. Hempel, and V. Mechtcherine, Aging of Alkali-Resistant Glass and Basalt Fibers in Alkaline Solutions: Evaluation of the Failure Stress by Weibull Distribution Function, J. Non-Cryst. Solids, 2009, 355, p 2588–2595CrossRef
9.
go back to reference J. Sim, C. Park, and D.Y. Moon, Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Compos. Part B Eng., 2005, 36, p 504–512CrossRef J. Sim, C. Park, and D.Y. Moon, Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Compos. Part B Eng., 2005, 36, p 504–512CrossRef
10.
go back to reference W. Tian, K.H. Leong, A.Y. Leong, F. Fredo, and M. Quaresimin, The Effect of Surface Treatments on the Mechanical Properties of Basalt-Reinforced Epoxy Composites, Polym. Compos., 2013, 34, p 320–329CrossRef W. Tian, K.H. Leong, A.Y. Leong, F. Fredo, and M. Quaresimin, The Effect of Surface Treatments on the Mechanical Properties of Basalt-Reinforced Epoxy Composites, Polym. Compos., 2013, 34, p 320–329CrossRef
11.
go back to reference V. Lopresto, C. Leone, and I.D. Iorio, Mechanical Characterisation of Basalt Fibre Reinforced Plastic, Compos. Part B Eng., 2011, 42, p 717–723CrossRef V. Lopresto, C. Leone, and I.D. Iorio, Mechanical Characterisation of Basalt Fibre Reinforced Plastic, Compos. Part B Eng., 2011, 42, p 717–723CrossRef
12.
go back to reference R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef
13.
go back to reference H. Kim, Thermal Characteristics of Basalt Fiber Reinforced Epoxy-Benzoxazine Composites, Fiber Polym., 2012, 13, p 762–768CrossRef H. Kim, Thermal Characteristics of Basalt Fiber Reinforced Epoxy-Benzoxazine Composites, Fiber Polym., 2012, 13, p 762–768CrossRef
14.
go back to reference S.X. Wang, L.Z. Wu, and L. Ma, Low-Velocity Impact and Residual Tensile Strength Analysis to Carbon Fiber Composite Laminates, Mater. Des., 2010, 31, p 118–125CrossRef S.X. Wang, L.Z. Wu, and L. Ma, Low-Velocity Impact and Residual Tensile Strength Analysis to Carbon Fiber Composite Laminates, Mater. Des., 2010, 31, p 118–125CrossRef
15.
go back to reference W.J. Cantwell and J. Morton, Geometrical Effects in the Low Velocity Impact Response of CFRP, Compos. Struct., 1989, 12, p 39–59CrossRef W.J. Cantwell and J. Morton, Geometrical Effects in the Low Velocity Impact Response of CFRP, Compos. Struct., 1989, 12, p 39–59CrossRef
16.
go back to reference M.F.S.F. de Moura and A.T. Marques, Prediction of Low Velocity Impact Damage in Carbon–Epoxy Laminates, Compos. Part A Appl. Sci., 2002, 33, p 361–368CrossRef M.F.S.F. de Moura and A.T. Marques, Prediction of Low Velocity Impact Damage in Carbon–Epoxy Laminates, Compos. Part A Appl. Sci., 2002, 33, p 361–368CrossRef
17.
go back to reference V. Tita, J.D. Carvalho, and D. Vandepitte, Failure Analysis of Low Velocity Impact on Thin Composite Laminates: Experimental and Numerical Approaches, Compos. Struct., 2008, 83, p 413–428CrossRef V. Tita, J.D. Carvalho, and D. Vandepitte, Failure Analysis of Low Velocity Impact on Thin Composite Laminates: Experimental and Numerical Approaches, Compos. Struct., 2008, 83, p 413–428CrossRef
18.
go back to reference X. Zhang, L. Hounslow, and M. Grassi, Improvement of Low-Velocity Impact and Compression-After-Impact Performance by z-Fibre Pinning, Compos. Sci. Technol., 2006, 66, p 2785–2794CrossRef X. Zhang, L. Hounslow, and M. Grassi, Improvement of Low-Velocity Impact and Compression-After-Impact Performance by z-Fibre Pinning, Compos. Sci. Technol., 2006, 66, p 2785–2794CrossRef
19.
go back to reference B. Berk, R. Karakuzu, B. Murat Icten, V. Arikan, Y. Arman, C. Atas, and A. Goren, An Experimental and Numerical Investigation on Low Velocity Impact Behavior of Composite Plates, J. Compos. Mater., 2016, 82, p 336–345 B. Berk, R. Karakuzu, B. Murat Icten, V. Arikan, Y. Arman, C. Atas, and A. Goren, An Experimental and Numerical Investigation on Low Velocity Impact Behavior of Composite Plates, J. Compos. Mater., 2016, 82, p 336–345
20.
go back to reference R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef
21.
go back to reference B.M. Icten, C. Atas, M. Aktas, and R. Karakuzu, Low Temperature Effect on Impact Response of Quasi-Isotropic Glass/Epoxy Laminated Plates, Compos. Struct., 2009, 91, p 318–323CrossRef B.M. Icten, C. Atas, M. Aktas, and R. Karakuzu, Low Temperature Effect on Impact Response of Quasi-Isotropic Glass/Epoxy Laminated Plates, Compos. Struct., 2009, 91, p 318–323CrossRef
22.
go back to reference M. Uyaner and M. Kara, Dynamic Response of Laminated Composites Subjected to Low-Velocity Impact, J. Compos. Mater., 2007, 41, p 2877–2895CrossRef M. Uyaner and M. Kara, Dynamic Response of Laminated Composites Subjected to Low-Velocity Impact, J. Compos. Mater., 2007, 41, p 2877–2895CrossRef
Metadata
Title
Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites
Authors
Farzin Azimpour Shishevan
Hamid Akbulut
M. A. Mohtadi-Bonab
Publication date
11-05-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2728-1

Other articles of this Issue 6/2017

Journal of Materials Engineering and Performance 6/2017 Go to the issue

Premium Partners