Skip to main content
Top
Published in: Rare Metals 1/2017

05-02-2016

Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles

Authors: Reza Taherzadeh Mousavian, Rasoul Azari Khosroshahi, Sasan Yazdani, Dermot Brabazon

Published in: Rare Metals | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, large micron-sized SiC particles were fragmented via ball-milling process in the presence of iron and nickel powders, separately, to fabricate composite powders of Fe–SiC and Ni–SiC. Continuous fracturing of brittle SiC powders leads to the formation of multi-modal-sized SiC powders with size of from 50 nm to slightly higher than 10 µm after 36-h ball milling. The milled powders were then incorporated into the semisolid melt of A356 aluminum alloy to ease the incorporation of fine SiC particles by using iron and nickel as their carrier agents. The final as-cast composites were then extruded at 500 °C with a reduction ratio of 9:1. Lower-sized composite powders with slight agglomeration are obtained for the 36-h milled Ni–SiC mixture compared to that of Fe–SiC powders, leading to incorporation of SiC particles into the melt with a lower size and suitable distribution for the Ni–SiC mixture. It is found that lower-sized composite particles could release the fine SiC particles into the melt more easily, while large agglomerated composite particles almost remain in its initial form, resulting in sites of stress concentration and low-strength aluminum matrix composites. Ultimate tensile strength (UTS) and yield strength (YS) values of 243 and 135 MPa, respectively, are obtained for the aluminum matrix composite in which nickel acts as the carrier of fine ceramic particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Khosroshahi NB, Mousavian RT, Khosroshahi RA, Brabazon D. Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles. Mater Des. 2015;83:678. Khosroshahi NB, Mousavian RT, Khosroshahi RA, Brabazon D. Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles. Mater Des. 2015;83:678.
[2]
go back to reference Soltani S, Khosroshahi RA, Mousavian RT, Jiang Z-Y, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2015;. doi:10.1007/s12598-015-0565-7. Soltani S, Khosroshahi RA, Mousavian RT, Jiang Z-Y, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2015;. doi:10.​1007/​s12598-015-0565-7.
[3]
go back to reference Mousavian RT, Damadi S, Khosroshahi RA, Brabazon D, Mohammadpour M. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol. 2015;81:433.CrossRef Mousavian RT, Damadi S, Khosroshahi RA, Brabazon D, Mohammadpour M. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol. 2015;81:433.CrossRef
[4]
go back to reference Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D, Boostani A. Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater Des. 2016;89:58. Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D, Boostani A. Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater Des. 2016;89:58.
[5]
go back to reference Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D, Brabazon D, Xu JZ, Zhang XM, Jiang ZY. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983. Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D, Brabazon D, Xu JZ, Zhang XM, Jiang ZY. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983.
[6]
go back to reference Boostani AF, Mousavian RT, Tahamtan S, Yazdani S, Khosroshahi RA, Wei D, Xu JZ, Gong D, Zhang XM, Jiang ZY. Graphene sheets encapsulating SiC nanoparticles: a roadmap towards enhancing tensile ductility of metal matrix composites. Mater Sci Eng A. 2015;648:92.CrossRef Boostani AF, Mousavian RT, Tahamtan S, Yazdani S, Khosroshahi RA, Wei D, Xu JZ, Gong D, Zhang XM, Jiang ZY. Graphene sheets encapsulating SiC nanoparticles: a roadmap towards enhancing tensile ductility of metal matrix composites. Mater Sci Eng A. 2015;648:92.CrossRef
[7]
go back to reference Vijayarangan S, Rajamanickam N, Sivananth V. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle. Mater Des. 2013;43:532.CrossRef Vijayarangan S, Rajamanickam N, Sivananth V. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle. Mater Des. 2013;43:532.CrossRef
[8]
go back to reference Tiruvenkadam N, Thyla P, Senthilkumar M, Bharathiraja M, Murugesan A. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines. Energy Convers Manag. 2015;98:440.CrossRef Tiruvenkadam N, Thyla P, Senthilkumar M, Bharathiraja M, Murugesan A. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines. Energy Convers Manag. 2015;98:440.CrossRef
[9]
go back to reference Chandran P, Sirimuvva T, Nayan N, Shukla AK, Murty SVSN, Pramod SL, Sharma SC, Bakshi SR. Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J Mater Eng Perform. 2014;23(3):1028.CrossRef Chandran P, Sirimuvva T, Nayan N, Shukla AK, Murty SVSN, Pramod SL, Sharma SC, Bakshi SR. Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J Mater Eng Perform. 2014;23(3):1028.CrossRef
[10]
go back to reference Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int. 2014;40(6):8323.CrossRef Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int. 2014;40(6):8323.CrossRef
[11]
go back to reference Valibeygloo N, Khosroshahi RA, Mousavian RT. Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater. 2013;20(10):978.CrossRef Valibeygloo N, Khosroshahi RA, Mousavian RT. Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater. 2013;20(10):978.CrossRef
[12]
go back to reference Roshan M, Mousavian TR, Ebrahimkhani H, Mosleh A. Fabrication of Al-based composites reinforced with Al2O3–Tib2 ceramic composite particulates using vortex-casting method. J Min Metall Sect B. 2013;49(3):299.CrossRef Roshan M, Mousavian TR, Ebrahimkhani H, Mosleh A. Fabrication of Al-based composites reinforced with Al2O3–Tib2 ceramic composite particulates using vortex-casting method. J Min Metall Sect B. 2013;49(3):299.CrossRef
[13]
go back to reference Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles. Ceram Int. 2014;40(8):12149.CrossRef Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles. Ceram Int. 2014;40(8):12149.CrossRef
[14]
go back to reference Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng. 2014;30(10):747.CrossRef Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng. 2014;30(10):747.CrossRef
[16]
go back to reference Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B. 2015;46(1):12.CrossRef Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B. 2015;46(1):12.CrossRef
[17]
go back to reference Raju KSR, Raju VR, Raju PRM, Ghosal P. Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites. In: Proceedings of International Conference on Advances in Design and Manufacturing. Tiruchirappalli, 2015.1. Raju KSR, Raju VR, Raju PRM, Ghosal P. Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites. In: Proceedings of International Conference on Advances in Design and Manufacturing. Tiruchirappalli, 2015.1.
[18]
go back to reference Raju KSR, Raju VR, Raju PRM, Ghosal P. Investigation of novel parameters affecting distribution of reinforcement in nano metal matrix composites. Int J Nanomanuf. 2015;11(1–2):94.CrossRef Raju KSR, Raju VR, Raju PRM, Ghosal P. Investigation of novel parameters affecting distribution of reinforcement in nano metal matrix composites. Int J Nanomanuf. 2015;11(1–2):94.CrossRef
[19]
go back to reference Boostani AF, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A. 2015;68(2):155.CrossRef Boostani AF, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A. 2015;68(2):155.CrossRef
[20]
go back to reference Su H, Gao WL, Zhang H, Liu HB, Lu J, Lu Z. Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater Sci Technol. 2012;28(2):178.CrossRef Su H, Gao WL, Zhang H, Liu HB, Lu J, Lu Z. Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater Sci Technol. 2012;28(2):178.CrossRef
[21]
go back to reference Xu J, Chen L, Choi H, Li X. Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter. 2012;24(25):255304.CrossRef Xu J, Chen L, Choi H, Li X. Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter. 2012;24(25):255304.CrossRef
[22]
go back to reference Xu J, Chen L, Choi H, Konish H, Li X. Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep. 2013;3:1. Xu J, Chen L, Choi H, Konish H, Li X. Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep. 2013;3:1.
[23]
go back to reference Xanthopoulou G, Marinou A, Vekinis G, Lekatou A, Vardavoulias M. Ni–Al and NiO–Al composite coatings by combustion-assisted flame spraying. Coatings. 2014;4(2):231.CrossRef Xanthopoulou G, Marinou A, Vekinis G, Lekatou A, Vardavoulias M. Ni–Al and NiO–Al composite coatings by combustion-assisted flame spraying. Coatings. 2014;4(2):231.CrossRef
[24]
go back to reference Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Evolution of iron aluminide in Al/Fe in situ composites fabricated by plasma synthesis method. Mater Sci Eng A. 2003;362(1):257.CrossRef Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Evolution of iron aluminide in Al/Fe in situ composites fabricated by plasma synthesis method. Mater Sci Eng A. 2003;362(1):257.CrossRef
[25]
go back to reference Rajan T, Pillai R, Pai B. Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization. J Alloys Compd. 2008;453(1):L4.CrossRef Rajan T, Pillai R, Pai B. Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization. J Alloys Compd. 2008;453(1):L4.CrossRef
[26]
go back to reference Rajan T, Pillai R, Pai B. Characterization of centrifugal cast functionally graded aluminum–silicon carbide metal matrix composites. Mater Charact. 2010;61(10):923.CrossRef Rajan T, Pillai R, Pai B. Characterization of centrifugal cast functionally graded aluminum–silicon carbide metal matrix composites. Mater Charact. 2010;61(10):923.CrossRef
[27]
go back to reference Rams J, Urena A, Escalera M, Sánchez M. Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos A Appl Sci Manuf. 2007;38(2):566.CrossRef Rams J, Urena A, Escalera M, Sánchez M. Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos A Appl Sci Manuf. 2007;38(2):566.CrossRef
[28]
go back to reference Farkoosh A, Pekguleryuz M. The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Mater Sci Eng A. 2013;582:248.CrossRef Farkoosh A, Pekguleryuz M. The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Mater Sci Eng A. 2013;582:248.CrossRef
[29]
go back to reference Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Fabrication of Al/Al3Fe composites by plasma synthesis method. Mater Sci Eng A. 2003;343(1):199.CrossRef Lee J-M, Kang S-B, Sato T, Tezuka H, Kamio A. Fabrication of Al/Al3Fe composites by plasma synthesis method. Mater Sci Eng A. 2003;343(1):199.CrossRef
[30]
go back to reference Goulart PR, Lazarine VB, Leal CV, Spinelli JE, Cheung N, Garcia A. Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix. Intermetallics. 2009;17(9):753.CrossRef Goulart PR, Lazarine VB, Leal CV, Spinelli JE, Cheung N, Garcia A. Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix. Intermetallics. 2009;17(9):753.CrossRef
[31]
go back to reference Blundell D, Wai S. Measurement of van der Waal’s forces between iron/iron surfaces in water by atomic force microscopy. Microsc Microanal. 2005;11(S2):382. Blundell D, Wai S. Measurement of van der Waal’s forces between iron/iron surfaces in water by atomic force microscopy. Microsc Microanal. 2005;11(S2):382.
Metadata
Title
Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles
Authors
Reza Taherzadeh Mousavian
Rasoul Azari Khosroshahi
Sasan Yazdani
Dermot Brabazon
Publication date
05-02-2016
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0689-9

Other articles of this Issue 1/2017

Rare Metals 1/2017 Go to the issue

Premium Partners