Skip to main content
Top
Published in: Wireless Networks 5/2019

11-01-2018

Markov chain model of fault-tolerant wireless networked control systems

Author: Pangun Park

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless networked control systems (WNCS) are composed of spatially distributed sensors, actuators, and controllers communicating through wireless networks instead of conventional point-to-point wired connections. While WNCSs have a tremendous potential to improve the efficiency of many critical control systems, for instance, in building automation and process control, the systems are fundamentally constrained by the packet losses and the functional faults of the underlying wireless sensor and actuator networks. Understanding the interaction between wireless networks and control systems is essential to characterize the performance limitations of the critical control systems and optimize its wireless network resources. This paper presents an analytical framework for modeling the behavior of the control loop over lossy and faulty network. The control loop over wireless networks is modeled through a Markov chain taking into account sensing links, actuating links, and recovery mechanism to compensate the faulty nodes. By using this model, the novel performance metrics are mathematically derived and are evaluated through both theoretical analysis and simulation results. The performance evaluation shows the critical tradeoff between the average performance when the control loop is in the normal operation mode and the recovery performance when it is in the abnormal operating mode due to the faulty nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., et al. (2012). Toward a science of cyber–physical system integration. Proceedings of the IEEE, 100(1), 2944.CrossRef Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., et al. (2012). Toward a science of cyber–physical system integration. Proceedings of the IEEE, 100(1), 2944.CrossRef
2.
go back to reference Bello, O., & Zeadally, S. (2016). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 11721182.CrossRef Bello, O., & Zeadally, S. (2016). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 11721182.CrossRef
3.
go back to reference Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138162.CrossRef Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138162.CrossRef
4.
go back to reference Kim, K. D., & Kumar, P. R. (2012). Cyber physical systems: A perspective at the centennial. Proceedings of the IEEE, 100, 12871308. Kim, K. D., & Kumar, P. R. (2012). Cyber physical systems: A perspective at the centennial. Proceedings of the IEEE, 100, 12871308.
5.
go back to reference Al-Dabbagh, A. W., & Chen, T. (2016). Design considerations for wireless networked control systems. IEEE Transactions on Industrial Electronics, 63, 5547–5557.CrossRef Al-Dabbagh, A. W., & Chen, T. (2016). Design considerations for wireless networked control systems. IEEE Transactions on Industrial Electronics, 63, 5547–5557.CrossRef
6.
go back to reference Petersen, S., & Carlsen, S. (2011). WirelessHART versus ISA100.11a: The format war hits the factory floor. IEEE Industrial Electronics Magazine, 5(4), 2334.CrossRef Petersen, S., & Carlsen, S. (2011). WirelessHART versus ISA100.11a: The format war hits the factory floor. IEEE Industrial Electronics Magazine, 5(4), 2334.CrossRef
7.
go back to reference Bill, P., Kranich, M., & Chari, N. (2013). Fine mesh 802.11 wireless network connectivity. ABB, Technical report Bill, P., Kranich, M., & Chari, N. (2013). Fine mesh 802.11 wireless network connectivity. ABB, Technical report
8.
go back to reference Blaney, J. (2009). Wireless proves its value. Power Engineering, 113(2), 38. Blaney, J. (2009). Wireless proves its value. Power Engineering, 113(2), 38.
9.
go back to reference Pister, K., Thubert, P., Systems, C., Dwars, S., & Phinney, T. (2009). Industrial routing requirements in low-power and lossy networks. IETF. Pister, K., Thubert, P., Systems, C., Dwars, S., & Phinney, T. (2009). Industrial routing requirements in low-power and lossy networks. IETF.
10.
go back to reference Bahramgiri, M., Hajiaghayi, M., & Mirrokni, V. S. (2006). Fault-tolerant and 3-dimensional distributed topology control algorithms in wireless multi-hop networks. Wireless Networks, 12(2), 179188.CrossRef Bahramgiri, M., Hajiaghayi, M., & Mirrokni, V. S. (2006). Fault-tolerant and 3-dimensional distributed topology control algorithms in wireless multi-hop networks. Wireless Networks, 12(2), 179188.CrossRef
11.
go back to reference Thallner, B., Moser, H., & Schmid, U. (2010). Topology control for fault-tolerant communication in wireless ad hoc networks. Wireless Networks, 16(2), 387404.CrossRef Thallner, B., Moser, H., & Schmid, U. (2010). Topology control for fault-tolerant communication in wireless ad hoc networks. Wireless Networks, 16(2), 387404.CrossRef
12.
go back to reference Saha, I., Sambasivan, L. K., Ghosh, S. K., & Patro, R. K. (2010). Distributed fault-tolerant topology control in wireless multi-hop networks. Wireless Networks, 16(6), 15111524.CrossRef Saha, I., Sambasivan, L. K., Ghosh, S. K., & Patro, R. K. (2010). Distributed fault-tolerant topology control in wireless multi-hop networks. Wireless Networks, 16(6), 15111524.CrossRef
13.
go back to reference Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251267.CrossRef Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251267.CrossRef
15.
go back to reference Patankar, R. P. (2004). A model for fault-tolerant networked control system using TTP/C communication. IEEE Transactions on Vehicular Technology, 53(5), 14611467.CrossRef Patankar, R. P. (2004). A model for fault-tolerant networked control system using TTP/C communication. IEEE Transactions on Vehicular Technology, 53(5), 14611467.CrossRef
16.
go back to reference Pajic, M., Chernoguzov, A., & Mangharam, R. (2013). Robust architectures for embedded wireless network control and actuation. ACM Transactions on Embedded Computing Systems, 11(4), 82–182. Pajic, M., Chernoguzov, A., & Mangharam, R. (2013). Robust architectures for embedded wireless network control and actuation. ACM Transactions on Embedded Computing Systems, 11(4), 82–182.
17.
go back to reference Xiong, J., & Lam, J. (2009). Stabilization of networked control systems with a logic ZOH. IEEE Transactions on Automatic Control, 54(2), 358363.MathSciNetCrossRefMATH Xiong, J., & Lam, J. (2009). Stabilization of networked control systems with a logic ZOH. IEEE Transactions on Automatic Control, 54(2), 358363.MathSciNetCrossRefMATH
18.
go back to reference Heemels, W. P. M. H., Teel, A. R., van de Wouw, N., & Nesic, D. (2010). Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance. IEEE Transactions on Automatic Control, 55(8), 17811796.MathSciNetCrossRefMATH Heemels, W. P. M. H., Teel, A. R., van de Wouw, N., & Nesic, D. (2010). Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance. IEEE Transactions on Automatic Control, 55(8), 17811796.MathSciNetCrossRefMATH
19.
go back to reference Rabi, M., Stabellini, L., Proutiere, A., & Johansson, M. (2010). Networked estimation under contention-based medium access. International Journal of Robust and Nonlinear Control, 20(2), 140–155.MathSciNetCrossRefMATH Rabi, M., Stabellini, L., Proutiere, A., & Johansson, M. (2010). Networked estimation under contention-based medium access. International Journal of Robust and Nonlinear Control, 20(2), 140–155.MathSciNetCrossRefMATH
20.
go back to reference Schenato, L., Sinopoli, B., Franceschetti, M., Poola, K., & Sastry, S. (2007). Foundations of control and estimation over lossy networks. Proceedings of the IEEE, 95(1), 163–187.CrossRef Schenato, L., Sinopoli, B., Franceschetti, M., Poola, K., & Sastry, S. (2007). Foundations of control and estimation over lossy networks. Proceedings of the IEEE, 95(1), 163–187.CrossRef
21.
go back to reference Srinivasan, K., Kazandjieva, M. A., Agarwal, S., & Levis, P. (2008). The beta-factor: Measuring wireless link burstiness. In ACM SenSys. Srinivasan, K., Kazandjieva, M. A., Agarwal, S., & Levis, P. (2008). The beta-factor: Measuring wireless link burstiness. In ACM SenSys.
22.
go back to reference Srinivasan, K., Jain, M., Choi, J. I., Azim, T., Kim, E. S., Levis, P., & Krishnamachari, B. (2010). The kappa factor: Inferring protocol performance using inter-link reception correlation. In ACM MobiCom. Srinivasan, K., Jain, M., Choi, J. I., Azim, T., Kim, E. S., Levis, P., & Krishnamachari, B. (2010). The kappa factor: Inferring protocol performance using inter-link reception correlation. In ACM MobiCom.
23.
go back to reference IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer. In IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (pp. 1–225) (2012). IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer. In IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (pp. 1–225) (2012).
24.
go back to reference Scheible, G., Dzung, D., Endresen, J., & Frey, J. E. (2007). Unplugged but connected design and implementation of a truly wireless real-time sensor/actuator interface. IEEE Industrial Electronics Magazine, 1(2), 25–34.CrossRef Scheible, G., Dzung, D., Endresen, J., & Frey, J. E. (2007). Unplugged but connected design and implementation of a truly wireless real-time sensor/actuator interface. IEEE Industrial Electronics Magazine, 1(2), 25–34.CrossRef
25.
go back to reference Jentzen, A., Leber, F., Schneisgen, D., Berger, A., & Siegmund, S. (2010). An improved maximum allowable transfer interval for IP-stability of networked control systems. IEEE Transactions on Automatic Control, 55(1), 179184.CrossRefMATH Jentzen, A., Leber, F., Schneisgen, D., Berger, A., & Siegmund, S. (2010). An improved maximum allowable transfer interval for IP-stability of networked control systems. IEEE Transactions on Automatic Control, 55(1), 179184.CrossRefMATH
26.
go back to reference Sadi, Y., Ergen, S. C., & Park, P. (2014). Minimum energy data transmission for wireless networked control systems. IEEE Transactions on Wireless Communications, 13(4), 21632175.CrossRef Sadi, Y., Ergen, S. C., & Park, P. (2014). Minimum energy data transmission for wireless networked control systems. IEEE Transactions on Wireless Communications, 13(4), 21632175.CrossRef
27.
go back to reference Park, P. (2015). Traffic generation rate control of wireless sensor and actuator networks. IEEE Communications Letters, 19(5), 827830.CrossRef Park, P. (2015). Traffic generation rate control of wireless sensor and actuator networks. IEEE Communications Letters, 19(5), 827830.CrossRef
28.
go back to reference Fridman, E. (2014). Introduction to time-delay systems: analysis and control. Basel: Birkhäuser.CrossRefMATH Fridman, E. (2014). Introduction to time-delay systems: analysis and control. Basel: Birkhäuser.CrossRefMATH
29.
go back to reference Billinton, R., & Allan, R. (1992). Reliability evaluation of engineering systems: Concepts and techniques. New York, NY: Plenum Press.CrossRefMATH Billinton, R., & Allan, R. (1992). Reliability evaluation of engineering systems: Concepts and techniques. New York, NY: Plenum Press.CrossRefMATH
30.
go back to reference Grinstead, C. M., & Snell, J. L. (1998). Introduction to probability. Providence, RI: American Mathematical Society.MATH Grinstead, C. M., & Snell, J. L. (1998). Introduction to probability. Providence, RI: American Mathematical Society.MATH
Metadata
Title
Markov chain model of fault-tolerant wireless networked control systems
Author
Pangun Park
Publication date
11-01-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1657-0

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue