Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Material Analysis Using Raman Spectroscopy

A Comparative Study of Graphite, Single- and Multi-walled Carbon Nanotubes

Authors : Animesh K. Ojha, H. Michael Heise

Published in: Molecular Spectroscopy—Experiment and Theory

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comparative Raman spectroscopic study of single-walled carbon nanotubes (SWCNT), special multi-walled carbon nanotube (MWCNT) material, and graphite is presented. Their Raman spectra have been recorded using different excitation wavelengths, 532, 785, and 1064 nm, in the region of 1800–1200 cm−1. The G-bands of SWCNTs observed at all excitation wavelengths were fitted taking bands into account with Breit-Wigner-Fano (BWF) and Lorentzian line shape functions. The contribution of both BWF and Lorentzian line shapes to the asymmetric G-band shows a mixture of semiconducting as well as metallic CNTs in the SWCNTs. For graphite and MWCNTs, only Lorentzian line shape functions were used for band deconvolution. The variation in wavenumber position of component bands of G-band with laser lines may be due to the resonance Raman effect, where the energy of laser lines matches with the electronic transition energy of CNTs with different diameters and chirality. The apparent Young’s modulus of SWCNT and MWCNT materials was determined using the integrated band intensity ratio of G- and D-bands, ID/IG, and it was found that the SWCNTs have a larger value of the apparent Young’s modulus compared to that of the highly aligned MWCNT material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef
3.
go back to reference Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as biomedical sensors. Adv Drug Deliv Rev 65:1933–1950CrossRefPubMedCentral Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as biomedical sensors. Adv Drug Deliv Rev 65:1933–1950CrossRefPubMedCentral
4.
go back to reference Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhito LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105CrossRef Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhito LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105CrossRef
5.
go back to reference Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem 20:1333–1354CrossRefPubMedCentral Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem 20:1333–1354CrossRefPubMedCentral
6.
go back to reference Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703CrossRefPubMedCentral Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703CrossRefPubMedCentral
7.
go back to reference Bokobza L (2012) A Raman investigation of carbon nanotubes embedded in a soft polymeric matrix. J Inorg Organometallic Polym 22(3):629–635CrossRef Bokobza L (2012) A Raman investigation of carbon nanotubes embedded in a soft polymeric matrix. J Inorg Organometallic Polym 22(3):629–635CrossRef
8.
go back to reference Baibarac M, Baltog I, Lefrant S (2011) Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/Carbon nanotubes composites. Curr Org Chem 15:1160–1196CrossRef Baibarac M, Baltog I, Lefrant S (2011) Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/Carbon nanotubes composites. Curr Org Chem 15:1160–1196CrossRef
9.
go back to reference Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993CrossRef Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993CrossRef
10.
go back to reference Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
11.
go back to reference Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125CrossRef Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125CrossRef
12.
go back to reference Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef
13.
go back to reference Lu W, Baek JB, Dai L (eds) (2015) Carbon nanomaterials for advanced energy systems: advances in materials synthesis and device applications. Wiley, Hoboken, NJ Lu W, Baek JB, Dai L (eds) (2015) Carbon nanomaterials for advanced energy systems: advances in materials synthesis and device applications. Wiley, Hoboken, NJ
14.
go back to reference Herrero-Latorre C, Álvarez-Méndez J, Barciela-García J, García-Martín S, Peña-Crecente RM (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Anal Chim Acta 853:77–94CrossRefPubMedCentral Herrero-Latorre C, Álvarez-Méndez J, Barciela-García J, García-Martín S, Peña-Crecente RM (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Anal Chim Acta 853:77–94CrossRefPubMedCentral
15.
go back to reference Braun EI, Huang A, Tusa CA, Yukica MA, Pantano P (2016) Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. J Occup Environ Hyg 13:915–923CrossRefPubMedCentral Braun EI, Huang A, Tusa CA, Yukica MA, Pantano P (2016) Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. J Occup Environ Hyg 13:915–923CrossRefPubMedCentral
16.
go back to reference Rogers-Nieman GM, Dinu CZ (2014) Therapeutic applications of carbon nanotubes: opportunities and challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:327–337CrossRefPubMedCentral Rogers-Nieman GM, Dinu CZ (2014) Therapeutic applications of carbon nanotubes: opportunities and challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:327–337CrossRefPubMedCentral
17.
go back to reference Herrera-Herrera AV, Gonzalez-Curbelo MA, Hernández-Borges J (2012) Carbon nanotubes applications in separation science: a review. Anal Chim Acta 734:1–30CrossRefPubMedCentral Herrera-Herrera AV, Gonzalez-Curbelo MA, Hernández-Borges J (2012) Carbon nanotubes applications in separation science: a review. Anal Chim Acta 734:1–30CrossRefPubMedCentral
18.
go back to reference Socas-Rodríguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146CrossRefPubMedCentral Socas-Rodríguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146CrossRefPubMedCentral
19.
go back to reference Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mat 3:610–614CrossRef Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mat 3:610–614CrossRef
20.
go back to reference Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef
21.
go back to reference Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettle A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925CrossRefPubMedCentral Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettle A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925CrossRefPubMedCentral
22.
go back to reference Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76:1376–1379CrossRefPubMedCentral Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76:1376–1379CrossRefPubMedCentral
23.
go back to reference Bischof T, Lermann G, Schreder B, Materny A, Kiefer W, Ivanda M (1997) Intensity-dependent micro-Raman and photoluminescence investigations of CdSxSe1−x nanocrystallites. J Opt Soc Am B 14:3334–3338CrossRef Bischof T, Lermann G, Schreder B, Materny A, Kiefer W, Ivanda M (1997) Intensity-dependent micro-Raman and photoluminescence investigations of CdSxSe1−x nanocrystallites. J Opt Soc Am B 14:3334–3338CrossRef
24.
go back to reference Schreder B, Materny A, Kiefer W, Kümmell T, Bacher G, Forchel A, Landwehr G (2000) Raman investigation of CdxZn1−xSe/ZnSe quantum wires: Strain relaxation and excitation profile. J Appl Phys 88:764–771CrossRef Schreder B, Materny A, Kiefer W, Kümmell T, Bacher G, Forchel A, Landwehr G (2000) Raman investigation of CdxZn1−xSe/ZnSe quantum wires: Strain relaxation and excitation profile. J Appl Phys 88:764–771CrossRef
25.
go back to reference Jorio A, Dresselhaus G, Dresselhaus MS, Souza M, Dantas MSS, Pimenta MA, Rao AM, Saito R, Liu C, Cheng HM (2000) Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett 85:2617–2620CrossRefPubMedCentral Jorio A, Dresselhaus G, Dresselhaus MS, Souza M, Dantas MSS, Pimenta MA, Rao AM, Saito R, Liu C, Cheng HM (2000) Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett 85:2617–2620CrossRefPubMedCentral
26.
go back to reference Kasuya A, Sasaki Y, Saito Y, Tohji K, Nishina Y (1997) Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys Rev Lett 78:4434–4441CrossRef Kasuya A, Sasaki Y, Saito Y, Tohji K, Nishina Y (1997) Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys Rev Lett 78:4434–4441CrossRef
27.
go back to reference Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefPubMedCentral Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefPubMedCentral
28.
go back to reference Jorio A, Kauppinen E, Hassanien A (2008) Carbon-nanotube metrology. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Topics applied in physics, vol 111. Springer, Berlin, pp 63–100 Jorio A, Kauppinen E, Hassanien A (2008) Carbon-nanotube metrology. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Topics applied in physics, vol 111. Springer, Berlin, pp 63–100
29.
go back to reference Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solid IX. Topics applied in physics, vol 108. Springer, Berlin, pp 115–232 Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solid IX. Topics applied in physics, vol 108. Springer, Berlin, pp 115–232
30.
go back to reference Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jario A, Canҫado LG, Fantini C, Pimenta MA, Filho AGS (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157CrossRef Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jario A, Canҫado LG, Fantini C, Pimenta MA, Filho AGS (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157CrossRef
31.
go back to reference Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotube. Imperial College Press, LondonCrossRef Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotube. Imperial College Press, LondonCrossRef
32.
go back to reference Dresselhaus MS, Endo M (2001) Carbon nanotubes: synthesis, structure, properties and applications. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Topics Applied in Physics, vol 80. Springer, Berlin, pp 11–28 Dresselhaus MS, Endo M (2001) Carbon nanotubes: synthesis, structure, properties and applications. In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Topics Applied in Physics, vol 80. Springer, Berlin, pp 11–28
33.
go back to reference Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poeschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poeschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef
34.
go back to reference Dresselhaus MS, Dresselhaus G, Jorio A (2007) Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. J Phys Chem C 111:17887–17893CrossRef Dresselhaus MS, Dresselhaus G, Jorio A (2007) Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. J Phys Chem C 111:17887–17893CrossRef
35.
go back to reference Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139CrossRef Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139CrossRef
36.
go back to reference Enomoto K, Kitakata S, Yasuhara T, Ohtake N (2006) Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl Phys Lett 88:153115–153117CrossRef Enomoto K, Kitakata S, Yasuhara T, Ohtake N (2006) Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl Phys Lett 88:153115–153117CrossRef
37.
go back to reference Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastava V, Asthana BP (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353CrossRef Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastava V, Asthana BP (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353CrossRef
38.
go back to reference Heise HM, Kuckuk R, Srivastava A, Asthana BP (2011) Characterization of carbon nanotube filters and other carbonaceous materials by Raman spectroscopy—II: study on dispersion and disorder parameters. J Raman Spectrosc 42:294–302CrossRef Heise HM, Kuckuk R, Srivastava A, Asthana BP (2011) Characterization of carbon nanotube filters and other carbonaceous materials by Raman spectroscopy—II: study on dispersion and disorder parameters. J Raman Spectrosc 42:294–302CrossRef
39.
go back to reference Fantini C, Jorio A, Souza M, Strano MS, Dresselhaus MS, Pimenta MA (2004) Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys Rev Lett 93:147406–147410CrossRefPubMedCentral Fantini C, Jorio A, Souza M, Strano MS, Dresselhaus MS, Pimenta MA (2004) Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys Rev Lett 93:147406–147410CrossRefPubMedCentral
40.
go back to reference Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Diameter control of single-walled carbon nanotubes. Synth Met 103:2555–2558CrossRef Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Diameter control of single-walled carbon nanotubes. Synth Met 103:2555–2558CrossRef
41.
go back to reference Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414–155421CrossRef Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414–155421CrossRef
42.
go back to reference Puretzky AA, Schittenhelm H, Fan X, Lance JM Jr, Allard LF, Geohegan DB (2002) Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys Rev B 65:245425–245433CrossRef Puretzky AA, Schittenhelm H, Fan X, Lance JM Jr, Allard LF, Geohegan DB (2002) Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys Rev B 65:245425–245433CrossRef
43.
go back to reference Tuinstra F, Foenig J (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef Tuinstra F, Foenig J (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef
44.
go back to reference Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 64:R5137CrossRef Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 64:R5137CrossRef
45.
go back to reference Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45:71–81CrossRef Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45:71–81CrossRef
46.
go back to reference Miyata Y, Yanagi K, Maniwa Y, Kataura H (2008) Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem 112:13187–13191 Miyata Y, Yanagi K, Maniwa Y, Kataura H (2008) Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem 112:13187–13191
47.
go back to reference Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRefPubMedCentral Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRefPubMedCentral
48.
go back to reference Miyata Y, Mizuno K, Kataura H (2011) Purity and defect characterization of single-wall carbon nanotubes using raman spectroscopy. J Nanomater 786763 Miyata Y, Mizuno K, Kataura H (2011) Purity and defect characterization of single-wall carbon nanotubes using raman spectroscopy. J Nanomater 786763
49.
go back to reference DiLeo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307–64311CrossRef DiLeo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307–64311CrossRef
Metadata
Title
Material Analysis Using Raman Spectroscopy
Authors
Animesh K. Ojha
H. Michael Heise
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-01355-4_4