Skip to main content
Top
Published in: Rare Metals 11/2018

10-10-2018

Material flow behavior modeling with consideration of size effects

Authors: Zhen-Wu Ma, Zi-Yang Cao, Jin-Bin Lu, Hua Li, Yuan-Jing Zhang, Wei Liu, Zhen Yin

Published in: Rare Metals | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Size effects make traditional forming theories infeasible in analyzing the micro-forming process, so it is necessary to develop an accurate material model to describe the material flow behavior with consideration of size effects. By studying the size effects of the flow behavior of H80 foils experimentally, it is found that the foil flow stress and strain hardening ability reduce significantly with the decrease of foil thickness. The reduction of the proportion of internal grains which own complete grain boundaries is the main cause of size effects of foil flow behavior. Moreover, grain refinement can reduce the size effects on material flow behavior. On these bases, a phenomenological material model has been developed to mathematically describe the material flow behavior with consideration of the effects of geometry size, grain size and strain hardening behavior. The reasonability and accuracy of this new model are verified by comparing the calculation values with experimental results in metal foil tensile and micro-bulk upsetting experiments. These experimental results and the proposed model lay a solid foundation for understanding and further exploring the material flow behavior in the micro-forming process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Fu MW, Chan WL. Micro-scaled Products Development via Microforming. London: Springer; 2014. 1. Fu MW, Chan WL. Micro-scaled Products Development via Microforming. London: Springer; 2014. 1.
[2]
go back to reference Han D, Xia Y, Yokota S, Kim JW, Han D, Xia Y. UV-LIGA technique by back UV exposure with self-alignment for ECF (electro-conjugate fluid) micropumps. J Micromech Microeng. 2017;27(12):125008.CrossRef Han D, Xia Y, Yokota S, Kim JW, Han D, Xia Y. UV-LIGA technique by back UV exposure with self-alignment for ECF (electro-conjugate fluid) micropumps. J Micromech Microeng. 2017;27(12):125008.CrossRef
[3]
go back to reference Asad ABMA, Masaki T, Rahman M, Lim HS, Wong Y. Tool-based micro-machining. J Mater Process Technol. 2007;192(5):204.CrossRef Asad ABMA, Masaki T, Rahman M, Lim HS, Wong Y. Tool-based micro-machining. J Mater Process Technol. 2007;192(5):204.CrossRef
[4]
go back to reference Ruprecht R, Gietzelt T, Müller K, Piotter V, Haußelt J. Injection molding of microstructured components from plastics, metals and ceramics. Microsyst Technol. 2002;8(4–5):351.CrossRef Ruprecht R, Gietzelt T, Müller K, Piotter V, Haußelt J. Injection molding of microstructured components from plastics, metals and ceramics. Microsyst Technol. 2002;8(4–5):351.CrossRef
[5]
go back to reference Piotter V, Benzler T, Gietzelt T, Ruprecht R, Haußelt J. Micro powder injection molding. Adv Eng Mater. 2000;2(10):639.CrossRef Piotter V, Benzler T, Gietzelt T, Ruprecht R, Haußelt J. Micro powder injection molding. Adv Eng Mater. 2000;2(10):639.CrossRef
[6]
go back to reference Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef Kals TA, Eckstein R. Miniaturization in sheet metal working. J Mater Process Technol. 2000;103(1):95.CrossRef
[7]
go back to reference Ma ZW, Tong GQ, Chen F. Tensile properties and fractographs of Ti-2.5Al-1.5Mn foils at different temperatures. Rare Met. 2017;36(4):247.CrossRef Ma ZW, Tong GQ, Chen F. Tensile properties and fractographs of Ti-2.5Al-1.5Mn foils at different temperatures. Rare Met. 2017;36(4):247.CrossRef
[8]
go back to reference Deng JH, Fu MW, Chan WL. Size effect on material surface deformation behavior in micro-forming process. Mater Sci Eng A. 2011;528(13):4799.CrossRef Deng JH, Fu MW, Chan WL. Size effect on material surface deformation behavior in micro-forming process. Mater Sci Eng A. 2011;528(13):4799.CrossRef
[9]
go back to reference Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol. 2004;151(1):70.CrossRef Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol. 2004;151(1):70.CrossRef
[10]
go back to reference Wang CJ, Shan DB, Zhou J, Guo B, Sun LN. Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol. 2007;s187–188(12):256.CrossRef Wang CJ, Shan DB, Zhou J, Guo B, Sun LN. Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol. 2007;s187–188(12):256.CrossRef
[11]
go back to reference Zhang ZF, Zhang H, Pan XF, Das J, Eckert J. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett. 2005;85(10):513.CrossRef Zhang ZF, Zhang H, Pan XF, Das J, Eckert J. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett. 2005;85(10):513.CrossRef
[12]
go back to reference Zhi J, Yang H, Peng F. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.CrossRef Zhi J, Yang H, Peng F. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.CrossRef
[13]
go back to reference Engel U, Eckstein R. Microforming—from basic research to its realization. J Mater Process Technol. 2002;125(2):35.CrossRef Engel U, Eckstein R. Microforming—from basic research to its realization. J Mater Process Technol. 2002;125(2):35.CrossRef
[14]
go back to reference Chan WL, Fu MW. Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A. 2012;556:60.CrossRef Chan WL, Fu MW. Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A. 2012;556:60.CrossRef
[15]
go back to reference Geiger M, Meßner A, Engel U. Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng. 1998;4(1):55. Geiger M, Meßner A, Engel U. Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng. 1998;4(1):55.
[16]
go back to reference Geißdörfer S, Engel U, Geiger M. FE-simulation of microforming processes applying a mesoscopic model. Int J Mach Tool Manu. 2006;46(11):1222.CrossRef Geißdörfer S, Engel U, Geiger M. FE-simulation of microforming processes applying a mesoscopic model. Int J Mach Tool Manu. 2006;46(11):1222.CrossRef
[17]
go back to reference Ma Z, Tong GQ, Chen F, Wang Q, Wang S. Grain size effect on springback behavior in bending of Ti-2.5Al-1.5Mn foils. J Mater Process Technol. 2015;224:11.CrossRef Ma Z, Tong GQ, Chen F, Wang Q, Wang S. Grain size effect on springback behavior in bending of Ti-2.5Al-1.5Mn foils. J Mater Process Technol. 2015;224:11.CrossRef
[18]
go back to reference Chan WL, Fu MW, Lu J, Liu JG. Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater Sci Eng A. 2010;527(24–25):6638.CrossRef Chan WL, Fu MW, Lu J, Liu JG. Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater Sci Eng A. 2010;527(24–25):6638.CrossRef
[19]
go back to reference Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tool Manuf. 2008;48(9):1014.CrossRef Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tool Manuf. 2008;48(9):1014.CrossRef
[20]
go back to reference Janssen PJM, Keijser THD, Geers MGD. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater Sci Eng A. 2006;419(1):238.CrossRef Janssen PJM, Keijser THD, Geers MGD. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater Sci Eng A. 2006;419(1):238.CrossRef
[21]
go back to reference Wang GC, Zheng W, Wu T, Jiang H, Zhao GQ, Wei DB, Jiang ZY. A multi-region model for numerical simulation of micro bulk forming. J Mater Process Technol. 2012;212(3):678.CrossRef Wang GC, Zheng W, Wu T, Jiang H, Zhao GQ, Wei DB, Jiang ZY. A multi-region model for numerical simulation of micro bulk forming. J Mater Process Technol. 2012;212(3):678.CrossRef
[22]
go back to reference Fu HH, Benson DJ, Meyers MA. Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 2001;49(13):2567.CrossRef Fu HH, Benson DJ, Meyers MA. Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 2001;49(13):2567.CrossRef
[23]
go back to reference Liu JG, Fu MW, Chan WL. A constitutive model for modeling of the deformation behavior in microforming with a consideration of grain boundary strengthening. Comput Mater Sci. 2012;55(55):85.CrossRef Liu JG, Fu MW, Chan WL. A constitutive model for modeling of the deformation behavior in microforming with a consideration of grain boundary strengthening. Comput Mater Sci. 2012;55(55):85.CrossRef
[24]
go back to reference Ma Z, Tong GQ, Chen F. Deformation behavior of materials in micro-forming with consideration of intragranular heterogeneities. Trans Nonferr Metal Soc. 2017;27(3):616.CrossRef Ma Z, Tong GQ, Chen F. Deformation behavior of materials in micro-forming with consideration of intragranular heterogeneities. Trans Nonferr Metal Soc. 2017;27(3):616.CrossRef
[25]
go back to reference Wang Q, Dong XH, Zhang HM, et al. Constitutive model for thin sheet metal with one or several grains across thickness in micro-forming. Trans Nonferr Metal Soc. 2013;23(5):1428.CrossRef Wang Q, Dong XH, Zhang HM, et al. Constitutive model for thin sheet metal with one or several grains across thickness in micro-forming. Trans Nonferr Metal Soc. 2013;23(5):1428.CrossRef
[26]
go back to reference Chan WL, Fu MW. Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A. 2011;528(25–26):7674.CrossRef Chan WL, Fu MW. Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A. 2011;528(25–26):7674.CrossRef
[27]
go back to reference Takaki S. Review on the Hall–Petch relation in ferritic steel. Mater Sci Forum. 2010;654–656(1):11.CrossRef Takaki S. Review on the Hall–Petch relation in ferritic steel. Mater Sci Forum. 2010;654–656(1):11.CrossRef
[28]
go back to reference Miyazaki S, Fujita H, Hiraoka H. Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al alloy. Scr Metall. 1979;13(6):447.CrossRef Miyazaki S, Fujita H, Hiraoka H. Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al alloy. Scr Metall. 1979;13(6):447.CrossRef
[29]
go back to reference Peng L, Liu F, Ni J, Lai X. Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des. 2007;28(5):1731.CrossRef Peng L, Liu F, Ni J, Lai X. Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des. 2007;28(5):1731.CrossRef
[30]
go back to reference Koneva NA, Starenchenko VA, Lychagin DV, Trishkina LI, Popova NA, Kozlov EV. Formation of dislocation cell substructure in face-centred cubic metallic solid solutions. Mater Sci Eng A. 2008;483(1):179.CrossRef Koneva NA, Starenchenko VA, Lychagin DV, Trishkina LI, Popova NA, Kozlov EV. Formation of dislocation cell substructure in face-centred cubic metallic solid solutions. Mater Sci Eng A. 2008;483(1):179.CrossRef
Metadata
Title
Material flow behavior modeling with consideration of size effects
Authors
Zhen-Wu Ma
Zi-Yang Cao
Jin-Bin Lu
Hua Li
Yuan-Jing Zhang
Wei Liu
Zhen Yin
Publication date
10-10-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 11/2018
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1156-1

Other articles of this Issue 11/2018

Rare Metals 11/2018 Go to the issue

Premium Partners