Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Material Selection Techniques in Materials for Electronics

Authors : Navneet Gupta, Kavindra Kandpal

Published in: Multiscale Modelling of Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Material selection is an important step prior to the actual fabrication of any electronic device. Owing to the availability of large set of materials, it is important to select the best possible material in order to enhance the performance of a device. Material selection approaches provide an easy way to recognize the trade-offs between conflicting materials properties and also to select the optimal material for better device performance. In addition to this, these approaches also help us to provide ranking to the alternatives from best to worst. Therefore, these approaches provide a platform to select and prioritize the possible materials and also provide support to perform rigorous evaluation of the possible alternatives. This chapter describes material selection methodologies in detail and explains the steps to be taken for each methodology to find out the most promising material for a given device.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48(1):359–369CrossRef Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48(1):359–369CrossRef
2.
go back to reference Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le J Phys IV 3(C7):C7–1 Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le J Phys IV 3(C7):C7–1
3.
go back to reference Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455CrossRef Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455CrossRef
4.
go back to reference Sharma P, Gupta N (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron 26(12):9607–9613CrossRef Sharma P, Gupta N (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron 26(12):9607–9613CrossRef
6.
go back to reference Gupta Navneet, Haldiya Varun (2018) High-k gate dielectric selection for Germanium based CMOS Devices. Int J Nanoelectron Mater 11(2):119–126 Gupta Navneet, Haldiya Varun (2018) High-k gate dielectric selection for Germanium based CMOS Devices. Int J Nanoelectron Mater 11(2):119–126
7.
go back to reference Kandpal Kavindra, Gupta Navneet (2016) Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J Mater Sci Mater Electron Springer 27(6):5972–5981CrossRef Kandpal Kavindra, Gupta Navneet (2016) Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J Mater Sci Mater Electron Springer 27(6):5972–5981CrossRef
8.
go back to reference Sundarama GM, Angiraa M, Guptaa N, Rangra K (2016) Material selection for CMOS compatible high Q and high frequency MEMS disk resonator using Ashby’s approach. Int J Nanoelectron Mater Malaysia 9:157–164 Sundarama GM, Angiraa M, Guptaa N, Rangra K (2016) Material selection for CMOS compatible high Q and high frequency MEMS disk resonator using Ashby’s approach. Int J Nanoelectron Mater Malaysia 9:157–164
9.
go back to reference Gupta Navneet, Mishra Abhinav (2016) Selection of substrate material for hybrid microwave integrated circuits (HMICs). Energetika 62:78–86CrossRef Gupta Navneet, Mishra Abhinav (2016) Selection of substrate material for hybrid microwave integrated circuits (HMICs). Energetika 62:78–86CrossRef
10.
go back to reference Sharma Prachi, Gupta Navneet (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron Springer, Berlin 26:9607–9613CrossRef Sharma Prachi, Gupta Navneet (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron Springer, Berlin 26:9607–9613CrossRef
11.
go back to reference Gupta N, Mishra A (2015) Material selection methodology for minimizing direct tunneling in nanowire transistors. J Electr Dev Perpignan University, France, 21:1811–1815 Gupta N, Mishra A (2015) Material selection methodology for minimizing direct tunneling in nanowire transistors. J Electr Dev Perpignan University, France, 21:1811–1815
13.
go back to reference Choudhary P, Kumar R, Gupta N (2014) Dielectric material selection of microstrip patch antenna for wireless communication applications using Ashby’s Approach. Int J Microw Wireless Technol Cambridge University Press and European Microwave Association. https://doi.org/10.1017/s1759078714000877. Published July 14, 2014CrossRef Choudhary P, Kumar R, Gupta N (2014) Dielectric material selection of microstrip patch antenna for wireless communication applications using Ashby’s Approach. Int J Microw Wireless Technol Cambridge University Press and European Microwave Association. https://​doi.​org/​10.​1017/​s175907871400087​7. Published July 14, 2014CrossRef
14.
go back to reference Sharma AK, Gupta N (2012) Material selection of RF-MEMS switch used for reconfigurable antenna using Ashby’s methodology. Prog Electromagnet Res Lett (PIER-L), 31:147–157CrossRef Sharma AK, Gupta N (2012) Material selection of RF-MEMS switch used for reconfigurable antenna using Ashby’s methodology. Prog Electromagnet Res Lett (PIER-L), 31:147–157CrossRef
15.
go back to reference Aditya BN, Gupta N (2012) Material selection methodology for gate dielectric material in metal-oxide-semiconductor devices. Mater Design 35:696–700CrossRef Aditya BN, Gupta N (2012) Material selection methodology for gate dielectric material in metal-oxide-semiconductor devices. Mater Design 35:696–700CrossRef
16.
go back to reference Gupta N (2011) Material selection for thin-film solar cells using multiple attribute decision making approach. Mater Design 32:1667–1671CrossRef Gupta N (2011) Material selection for thin-film solar cells using multiple attribute decision making approach. Mater Design 32:1667–1671CrossRef
17.
go back to reference Parate O, Gupta N (2011) Material selection for electrostatic microactuators using Ashby approach. Mater Design 32:1577–1581CrossRef Parate O, Gupta N (2011) Material selection for electrostatic microactuators using Ashby approach. Mater Design 32:1577–1581CrossRef
18.
go back to reference Reddy GP, Gupta N (2010) Material selection for microelectronic heat sinks: an application of the Ashby approach. Mater Design 31:113–117 Reddy GP, Gupta N (2010) Material selection for microelectronic heat sinks: an application of the Ashby approach. Mater Design 31:113–117
19.
go back to reference Wilk GD, Wallace RM, Anthony J (2001) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275CrossRef Wilk GD, Wallace RM, Anthony J (2001) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275CrossRef
20.
go back to reference Association SI (2006) International technology roadmap for semiconductors. http//www.itrs.net Association SI (2006) International technology roadmap for semiconductors. http//www.itrs.net
21.
go back to reference Huang AP, Yang ZC, Chu PK (2010) Hafnium-based high-k gate dielectrics. Advanc Solid State Circuit Technol. InTech Huang AP, Yang ZC, Chu PK (2010) Hafnium-based high-k gate dielectrics. Advanc Solid State Circuit Technol. InTech
22.
go back to reference Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Devices 50(4):1027–1035CrossRef Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Devices 50(4):1027–1035CrossRef
23.
go back to reference Yamamoto N, Makino H, Yamamoto T (2011) Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Adv Mater Sci Eng Yamamoto N, Makino H, Yamamoto T (2011) Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Adv Mater Sci Eng
24.
go back to reference Qian LX, Lai PT, Tang WM (2014) Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Appl Phys Lett 104(12):1–6CrossRef Qian LX, Lai PT, Tang WM (2014) Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Appl Phys Lett 104(12):1–6CrossRef
25.
go back to reference Ji L-W et al (2013) Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J 13(12):4940–4943CrossRef Ji L-W et al (2013) Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J 13(12):4940–4943CrossRef
26.
go back to reference Lee JS, Chang S, Koo SM, Lee SY (2010) High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron Device Lett 31(3):225–227CrossRef Lee JS, Chang S, Koo SM, Lee SY (2010) High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron Device Lett 31(3):225–227CrossRef
Metadata
Title
Material Selection Techniques in Materials for Electronics
Authors
Navneet Gupta
Kavindra Kandpal
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2267-3_1