Skip to main content
Top
Published in: Journal of Electronic Materials 6/2021

16-03-2021 | Review Article

Materials Selection Approaches and Fabrication Methods in RF MEMS Switches

Authors: Kurmendra, Rajesh Kumar

Published in: Journal of Electronic Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A state of the art review on Radio Frequency Micro-Electromechanical Systems (RF MEMS) capacitive switches is reported by considering two key aspects: (1) materials selection approaches for improving performance, and (2) fabrication methods used in capacitive MEMS switches. The beam and dielectric materials used in capacitive MEMS switches and the performance achieved through them are reviewed and reported by a rigorous literature survey. Further, materials selection approaches for the beam membrane and the dielectric layer are discussed using Ashby’s methodology, and other associated methods based on it, which uses material indices to evaluate the performance of a switch. Performance indicators for the beam materials selection are the pull-in voltage, RF loss, thermal residual stress, contact resistance, thermal conductivity, and maximum displacement, whereas the hold-down voltage, dielectric charging, leakage current, heat dissipation, capacitance ratio, and stability are performance indicators in dielectric materials selection. MEMS switch fabrication can be achieved through bulk micromachining processes and surface micromachining processes, but the surface micromachining process has been preferred over the last few decades. The fabricated MEMS switch components can be integrated using a monolithic complementary metal oxide semiconductor–micro-electromechanical systems (CMOS-MEMS) process for the realization of applications in sensors, resonators, amplifiers, phase shifters, and MEMS satellite vehicles for space applications. CMOS-MEMS monolithic fabrication is discussed further with the help of fabrication process involved and the process technology. The TSMC-CMOS 0.35 \(\upmu \hbox {m}\) technology is one of the leading technologies in CMOS-MEMS fabrication and is mainly used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I.E. Lysenko, A.V. Tkachenko, O.A. Ezhova, B.G. Konoplev, E.A. Ryndin, and E.V. Sherova, Electronics 9(2), 207 (2020).CrossRef I.E. Lysenko, A.V. Tkachenko, O.A. Ezhova, B.G. Konoplev, E.A. Ryndin, and E.V. Sherova, Electronics 9(2), 207 (2020).CrossRef
2.
go back to reference J.H. Sinsky and C.R. Westgate, In 1997 IEEE MTT-S International Microwave Symposium Digest, volume 2, pages 647–650. IEEE, (1997). J.H. Sinsky and C.R. Westgate, In 1997 IEEE MTT-S International Microwave Symposium Digest, volume 2, pages 647–650. IEEE, (1997).
3.
4.
5.
go back to reference A. Domurat-Linde, K. Lang, and E. Hoene, In International Symposium on Electromagnetic Compatibility-EMC EUROPE, pages 1–6. IEEE, (2012). A. Domurat-Linde, K. Lang, and E. Hoene, In International Symposium on Electromagnetic Compatibility-EMC EUROPE, pages 1–6. IEEE, (2012).
6.
go back to reference K. Boonying, C. Phongcharoenpanich, and S. Kosulvit, In The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), pages 1–4. IEEE, (2014). K. Boonying, C. Phongcharoenpanich, and S. Kosulvit, In The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), pages 1–4. IEEE, (2014).
7.
go back to reference M.N.A. Aadit, S.G. Kirtania, F. Afrin, Md K. Alam, and Q. Deen Mohd Khosru, Different types of field-effect transistors: theory and applications, pages 45–64, (2017). M.N.A. Aadit, S.G. Kirtania, F. Afrin, Md K. Alam, and Q. Deen Mohd Khosru, Different types of field-effect transistors: theory and applications, pages 45–64, (2017).
8.
go back to reference H. Liu, S. Datta and V. Narayanan, In International symposium on low power Electronics and Design (ISLPED), pages 145–150. IEEE, (2013). H. Liu, S. Datta and V. Narayanan, In International symposium on low power Electronics and Design (ISLPED), pages 145–150. IEEE, (2013).
9.
go back to reference R. Negra, T.D. Chu, M. Helaoui, S. Boumaiza, G.M. Hegazi, and F.M. Ghannouchi, In 2007 IEEE/MTT-S International Microwave Symposium, pages 795–798. IEEE, (2007). R. Negra, T.D. Chu, M. Helaoui, S. Boumaiza, G.M. Hegazi, and F.M. Ghannouchi, In 2007 IEEE/MTT-S International Microwave Symposium, pages 795–798. IEEE, (2007).
10.
go back to reference W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, IEEE Electron. Device Lett. 27(5), 326 (2006).CrossRef W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, IEEE Electron. Device Lett. 27(5), 326 (2006).CrossRef
11.
go back to reference A. Kundu, S. Sethi, N.C. Mondal, B. Gupta, S.K. Lahiri, and H. Saha, Microelectron. J. 41(5), 257 (2010). A. Kundu, S. Sethi, N.C. Mondal, B. Gupta, S.K. Lahiri, and H. Saha, Microelectron. J. 41(5), 257 (2010).
12.
go back to reference D. Mercier, K. Van Caekenberghe, and G.M. Rebeiz, In IEEE MTT-S International Microwave Symposium Digest, 2005., pages 4–pp. IEEE, (2005). D. Mercier, K. Van Caekenberghe, and G.M. Rebeiz, In IEEE MTT-S International Microwave Symposium Digest, 2005., pages 4–pp. IEEE, (2005).
13.
go back to reference Y. Liu, Y. Bey, and X. Liu, IEEE Trans. Microw. Theory Tech. 65(9), 3188 (2017).CrossRef Y. Liu, Y. Bey, and X. Liu, IEEE Trans. Microw. Theory Tech. 65(9), 3188 (2017).CrossRef
14.
go back to reference S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh. J. Micromech. Microeng. 28(7), 075012 (2018).CrossRef S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh. J. Micromech. Microeng. 28(7), 075012 (2018).CrossRef
15.
go back to reference M. Angira, D. Bansal, P. Kumar, K. Mehta, and K. Rangra, Superlattices Microstruct. 133, 106204 (2019).CrossRef M. Angira, D. Bansal, P. Kumar, K. Mehta, and K. Rangra, Superlattices Microstruct. 133, 106204 (2019).CrossRef
16.
go back to reference L. Narayana Thalluri, K. Guha, K. Srinivasa Rao, G. Venkata Hari Prasad, K. Girija Sravani, K.S.R. Sastry, A. Raju Kanakala, and P. Bose Babu. Microsyst.Technol. 1 (2020). L. Narayana Thalluri, K. Guha, K. Srinivasa Rao, G. Venkata Hari Prasad, K. Girija Sravani, K.S.R. Sastry, A. Raju Kanakala, and P. Bose Babu. Microsyst.Technol. 1 (2020).
17.
go back to reference S.S. Tan, C.Y. Liu, L.K. Yeh, Y.H. Chiu, and K.Y.J. Hsu. J. Micromech. Microeng. 21(3), 035005 (2011). S.S. Tan, C.Y. Liu, L.K. Yeh, Y.H. Chiu, and K.Y.J. Hsu. J. Micromech. Microeng. 21(3), 035005 (2011).
19.
go back to reference J.Y. Park, G.H. Kim, K.W. Chung, and J.U. Bu. Sensors Actuators A: Phys., 89(1-2), 88 (2001). J.Y. Park, G.H. Kim, K.W. Chung, and J.U. Bu. Sensors Actuators A: Phys., 89(1-2), 88 (2001).
20.
go back to reference R. Ramadoss, S. Lee, Y.C. Lee, V.M. Bright, and K.C. Gupta, IEEE Trans. Adv. Packag. 26(3), 248 (2003).CrossRef R. Ramadoss, S. Lee, Y.C. Lee, V.M. Bright, and K.C. Gupta, IEEE Trans. Adv. Packag. 26(3), 248 (2003).CrossRef
21.
go back to reference A.B. Yu, A.Q. Liu, J. Oberhammer, Q.X. Zhang, and H.M. Hosseini, J. Micromech. Microeng. 17(10), 2024 (2007).CrossRef A.B. Yu, A.Q. Liu, J. Oberhammer, Q.X. Zhang, and H.M. Hosseini, J. Micromech. Microeng. 17(10), 2024 (2007).CrossRef
22.
go back to reference M. Fernández-Bolaños, J. Perruisseau-Carrier, P. Dainesi, and A.M. Ionescu, Microelectron. Eng. 85(5–6), 1039 (2008).CrossRef M. Fernández-Bolaños, J. Perruisseau-Carrier, P. Dainesi, and A.M. Ionescu, Microelectron. Eng. 85(5–6), 1039 (2008).CrossRef
23.
24.
go back to reference A. Persano, F. Quaranta, G. Capoccia, E. Proietti, A. Lucibello, R. Marcelli, A. Bagolini, J. Iannacci, A. Taurino, and P. Siciliano, Microsyst. Technol. 22(7), 1741 (2016).CrossRef A. Persano, F. Quaranta, G. Capoccia, E. Proietti, A. Lucibello, R. Marcelli, A. Bagolini, J. Iannacci, A. Taurino, and P. Siciliano, Microsyst. Technol. 22(7), 1741 (2016).CrossRef
25.
go back to reference S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh, J. Microelectromech. Syst. 26(3), 643 (2017).CrossRef S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh, J. Microelectromech. Syst. 26(3), 643 (2017).CrossRef
26.
go back to reference M.F. Ashby and D. Cebon. Le Journal de Physique IV 3(C7), C7–1 (1993). M.F. Ashby and D. Cebon. Le Journal de Physique IV 3(C7), C7–1 (1993).
27.
28.
go back to reference Y. Mafinejad, A. Kouzani, K. Mafinezhad, and I. Mashad, J. Microelectron. Electron. Compon. Mater. 43(2), 85 (2013). Y. Mafinejad, A. Kouzani, K. Mafinezhad, and I. Mashad, J. Microelectron. Electron. Compon. Mater. 43(2), 85 (2013).
29.
go back to reference V.B. Sawant, S.S. Mohite, and L.N. Cheulkar. Materials Today: Proc., 5(4), 10704 (2018). V.B. Sawant, S.S. Mohite, and L.N. Cheulkar. Materials Today: Proc., 5(4), 10704 (2018).
30.
go back to reference D. Deshmukh and M. Angira, Trans. Electr. Electron. Mater. 20(3), 181 (2019).CrossRef D. Deshmukh and M. Angira, Trans. Electr. Electron. Mater. 20(3), 181 (2019).CrossRef
31.
go back to reference R. Raman, T. Shanmuganantham, and D. Sindhanaiselvi, Mater. Today: Proc. 5(1), 1890 (2018). R. Raman, T. Shanmuganantham, and D. Sindhanaiselvi, Mater. Today: Proc. 5(1), 1890 (2018).
32.
33.
go back to reference S. Girish Gandhi, I. Govardhani, S. Kumar Kotamraju, K. Ch Sri Kavya, D. Prathyusha, K. Srinivasa Rao, and K. Girija Sravani, Trans. Electr. Electron. Mater., 21(1):83, (2020). S. Girish Gandhi, I. Govardhani, S. Kumar Kotamraju, K. Ch Sri Kavya, D. Prathyusha, K. Srinivasa Rao, and K. Girija Sravani, Trans. Electr. Electron. Mater., 21(1):83, (2020).
34.
go back to reference J.G Noel, IET Circuits Devices Syst. 10(2):156, (2016). J.G Noel, IET Circuits Devices Syst. 10(2):156, (2016).
35.
36.
37.
go back to reference A. Paldas and N. Gupta, Int. J. Mech. Prod. Eng. 1(3), 7 (2013). A. Paldas and N. Gupta, Int. J. Mech. Prod. Eng. 1(3), 7 (2013).
38.
go back to reference U.S. Arathy and R. Resmi, In 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pages 57–61. IEEE, (2015). U.S. Arathy and R. Resmi, In 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pages 57–61. IEEE, (2015).
39.
go back to reference M. Krishna Bonthu and A. Kumar Sharma, Microsyst. Technol. 24(4), 1803 (2018).CrossRef M. Krishna Bonthu and A. Kumar Sharma, Microsyst. Technol. 24(4), 1803 (2018).CrossRef
40.
go back to reference J. Li, T. Mattila, and V. Vuorinen, Handbook of silicon based mems materials and technologies, (2015). J. Li, T. Mattila, and V. Vuorinen, Handbook of silicon based mems materials and technologies, (2015).
41.
go back to reference I.E. Lysenko, A.V. Tkachenko, E.V. Sherova, and A.V. Nikitin. Electronics 7(12), 415 (2018). I.E. Lysenko, A.V. Tkachenko, E.V. Sherova, and A.V. Nikitin. Electronics 7(12), 415 (2018).
42.
43.
go back to reference P. Patra and M. Angira, Trans. Electr. Electron. Mater. 1–8 (2019). P. Patra and M. Angira, Trans. Electr. Electron. Mater. 1–8 (2019).
44.
45.
go back to reference M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, Sensors Actuators A: Phys. 142(1), 192 (2008). M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, Sensors Actuators A: Phys. 142(1), 192 (2008).
46.
go back to reference K.E Bean, IEEE Trans. Electron Devices 25(10), 1185 (1978). K.E Bean, IEEE Trans. Electron Devices 25(10), 1185 (1978).
48.
go back to reference M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, Sens. Actuators, A 80(2), 179 (2000).CrossRef M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, Sens. Actuators, A 80(2), 179 (2000).CrossRef
49.
go back to reference J.O. Dennis, F. Ahmad, and H.B.M. Khir, Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies, page 226, (2013). J.O. Dennis, F. Ahmad, and H.B.M. Khir, Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies, page 226, (2013).
50.
go back to reference L. Hsu, T. Dalton, L. Clevenger, C. Radens, K. Wong, and C.-C. Yang, January 17 2008. US Patent App. 11/776,835. L. Hsu, T. Dalton, L. Clevenger, C. Radens, K. Wong, and C.-C. Yang, January 17 2008. US Patent App. 11/776,835.
51.
go back to reference V. Srivastav, R. Pal, and H.P. Vyas, Optoelectron. Rev. 13(3), 197 (2005). V. Srivastav, R. Pal, and H.P. Vyas, Optoelectron. Rev. 13(3), 197 (2005).
52.
go back to reference F. Yongqing, D. Hejun, and J. Miao, J. Mater. Process. Technol. 132(1–3), 73 (2003). F. Yongqing, D. Hejun, and J. Miao, J. Mater. Process. Technol. 132(1–3), 73 (2003).
53.
go back to reference H. Jaafar, K.S. Beh, N. Amziah Md Yunus, W. Zuha Wan Hasan, S. Shafie, and O. Sidek, Microsyst. Technol. 20(12), 2109 (2014). H. Jaafar, K.S. Beh, N. Amziah Md Yunus, W. Zuha Wan Hasan, S. Shafie, and O. Sidek, Microsyst. Technol. 20(12), 2109 (2014).
54.
go back to reference M. Kim, D. Knoefler, E. Quarles, U. Jakob, and D. Bazopoulou, Transl. Med. Aging, (2020). M. Kim, D. Knoefler, E. Quarles, U. Jakob, and D. Bazopoulou, Transl. Med. Aging, (2020).
55.
go back to reference J.A. Liddle, H.A. Huggins, S.D. Berger, J.M. Gibson, G. Weber, R. Kola, and C.W. Jurgensen, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measur. Phenomena 9(6), 3000 (1991).CrossRef J.A. Liddle, H.A. Huggins, S.D. Berger, J.M. Gibson, G. Weber, R. Kola, and C.W. Jurgensen, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measur. Phenomena 9(6), 3000 (1991).CrossRef
56.
go back to reference K. Srinivasa Rao and T. Lakshmi Narayana. Review on Analytical Design, Simulation, Fabrication, Characterization, and Packaging Aspects of Micro Electro Mechanical Switches for Radio Frequency Applications, (2016). K. Srinivasa Rao and T. Lakshmi Narayana. Review on Analytical Design, Simulation, Fabrication, Characterization, and Packaging Aspects of Micro Electro Mechanical Switches for Radio Frequency Applications, (2016).
58.
go back to reference K.W. Rhee, M.C. Peckerar, C.R.K. Marrian, and E.A. Dobisz, January 25 2000. US Patent 6,017,658. K.W. Rhee, M.C. Peckerar, C.R.K. Marrian, and E.A. Dobisz, January 25 2000. US Patent 6,017,658.
60.
go back to reference O. Abegunde, E.T. Akinlabi, and O.P. Oladijo, Appl. Surface Sci. 146323 (2020). O. Abegunde, E.T. Akinlabi, and O.P. Oladijo, Appl. Surface Sci. 146323 (2020).
61.
go back to reference B. Eun Jang and S.J. Hong, Trans. Electr. Electron. Mater. 19(1), 1 (2018).CrossRef B. Eun Jang and S.J. Hong, Trans. Electr. Electron. Mater. 19(1), 1 (2018).CrossRef
62.
go back to reference S.P. Pacheco, L.P.B. Katehi, and C.T.-C. Nguyen, In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), volume 1, pages 165–168. IEEE, (2000). S.P. Pacheco, L.P.B. Katehi, and C.T.-C. Nguyen, In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), volume 1, pages 165–168. IEEE, (2000).
63.
go back to reference I.-J. Cho, and E. Yoon, J. Micromech. Microeng. 20(3), 035028 (2010). I.-J. Cho, and E. Yoon, J. Micromech. Microeng. 20(3), 035028 (2010).
64.
65.
go back to reference Y. Mafinejad, H.R. Ansari, and S. Khosroabadi, Microsyst. Technol. 26(4), 1253 (2020).CrossRef Y. Mafinejad, H.R. Ansari, and S. Khosroabadi, Microsyst. Technol. 26(4), 1253 (2020).CrossRef
66.
go back to reference S. Gopalakrishnan, A. DasGupta, and D.R. Nai,. J. Micromech. Microeng., 27(9), 095013 (2017). S. Gopalakrishnan, A. DasGupta, and D.R. Nai,. J. Micromech. Microeng., 27(9), 095013 (2017).
67.
go back to reference T. Kageyama, K. Shinozaki, L. Zhang, L. Jian, H. Takaki, and S.-S. Lee, Micro Nano Syst. Lett. 6(1), 1 (2018). T. Kageyama, K. Shinozaki, L. Zhang, L. Jian, H. Takaki, and S.-S. Lee, Micro Nano Syst. Lett. 6(1), 1 (2018).
68.
go back to reference K. Han, X. Guo, S. Smith, Z. Deng, and W. Li, Micromachines 9(8), 390 (2018). K. Han, X. Guo, S. Smith, Z. Deng, and W. Li, Micromachines 9(8), 390 (2018).
70.
go back to reference S. Shekhar and K.J. Vinoy, ISSS J. Micro Smart Syst. 8(1), 31 (2019). S. Shekhar and K.J. Vinoy, ISSS J. Micro Smart Syst. 8(1), 31 (2019).
71.
go back to reference R.A. Moghadam, H. Saffari, and J. Koohsorkhi, Microsystem Technologies, pages 1–8, (2020). R.A. Moghadam, H. Saffari, and J. Koohsorkhi, Microsystem Technologies, pages 1–8, (2020).
72.
go back to reference I.V. Uvarov, R.V. Selyukov, and V.V. Naumov, Microsystem Technologies, pages 1–10, (2020). I.V. Uvarov, R.V. Selyukov, and V.V. Naumov, Microsystem Technologies, pages 1–10, (2020).
73.
go back to reference M. Koutsoureli, G. Stavrinidis, D. Birmpiliotis, G. Konstantinidis, and G. Papaioannou, Microelectron. Eng. 223, 111230 (2020).CrossRef M. Koutsoureli, G. Stavrinidis, D. Birmpiliotis, G. Konstantinidis, and G. Papaioannou, Microelectron. Eng. 223, 111230 (2020).CrossRef
74.
go back to reference J.E. Ramstad, Cmos-mems integration, (2006). J.E. Ramstad, Cmos-mems integration, (2006).
75.
go back to reference M.Kousuke, M. Moriyama, M. Esashi, and S. Tanaka, In 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS), pages 1153–1156. IEEE, (2012). M.Kousuke, M. Moriyama, M. Esashi, and S. Tanaka, In 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS), pages 1153–1156. IEEE, (2012).
76.
go back to reference M. Narducci, L. Yu-Chia, W. Fang, and J. Tsai, J. Micromech. Microeng. 23(5), 055007 (2013).CrossRef M. Narducci, L. Yu-Chia, W. Fang, and J. Tsai, J. Micromech. Microeng. 23(5), 055007 (2013).CrossRef
77.
go back to reference W.-C. Chen, W. Fang, S.-S. Li, J. Micromech. Microeng. 21(6), 065012 (2011). W.-C. Chen, W. Fang, S.-S. Li, J. Micromech. Microeng. 21(6), 065012 (2011).
78.
go back to reference S.-H. Liao, W.-J. Chen, and M.S.-C. Lu. IEEE Sensors J., 13(5), 1401 (2013). S.-H. Liao, W.-J. Chen, and M.S.-C. Lu. IEEE Sensors J., 13(5), 1401 (2013).
79.
go back to reference K.S. Ahmed, Abdel, Aziz, M. Bakri-Kassem, and R.R. Mansour, J. Micromech. Microeng. 30(4), 045006 (2020).CrossRef K.S. Ahmed, Abdel, Aziz, M. Bakri-Kassem, and R.R. Mansour, J. Micromech. Microeng. 30(4), 045006 (2020).CrossRef
80.
go back to reference J.-R. Liu, L. Shih-Chuan, C.-P. Tsai, and W.-C. Li, J. Micromech. Microeng. 28(6), 065001 (2018). J.-R. Liu, L. Shih-Chuan, C.-P. Tsai, and W.-C. Li, J. Micromech. Microeng. 28(6), 065001 (2018).
81.
go back to reference S Tolunay Wipf, A. Göritz, M. Wietstruck, M. Cirillo, C. Wipf, W. Winkler, and M. Kaynak, In 2017 47th European Microwave Conference (EuMC), pages 320–323. IEEE, (2017). S Tolunay Wipf, A. Göritz, M. Wietstruck, M. Cirillo, C. Wipf, W. Winkler, and M. Kaynak, In 2017 47th European Microwave Conference (EuMC), pages 320–323. IEEE, (2017).
82.
go back to reference J.L. Muñoz-Gamarra, A. Uranga, and N. Barniol, Micromachines 7(2), 30 (2016).CrossRef J.L. Muñoz-Gamarra, A. Uranga, and N. Barniol, Micromachines 7(2), 30 (2016).CrossRef
83.
go back to reference Cheng-Yang. Lin, Cheng-Chih. Hsu, Ching-Liang. Dai, Micromachines 6(11), 1645 (2015). Cheng-Yang. Lin, Cheng-Chih. Hsu, Ching-Liang. Dai, Micromachines 6(11), 1645 (2015).
84.
go back to reference Sara S Attar, Sormeh Setoodeh, Raafat R Mansour, and Deepnarayan Gupta. IEEE transactions on microwave theory and techniques, 62(7):1437 (2014). Sara S Attar, Sormeh Setoodeh, Raafat R Mansour, and Deepnarayan Gupta. IEEE transactions on microwave theory and techniques, 62(7):1437 (2014).
85.
go back to reference Guanghai Ding. Intelligent cmos control of rf mems capacitive switches. (2013). Guanghai Ding. Intelligent cmos control of rf mems capacitive switches. (2013).
86.
go back to reference Siamak Fouladi, Frédéric Domingue, and Raafat Mansour. In 2012 IEEE/MTT-S International Microwave Symposium Digest, pages 1–3. IEEE, (2012). Siamak Fouladi, Frédéric Domingue, and Raafat Mansour. In 2012 IEEE/MTT-S International Microwave Symposium Digest, pages 1–3. IEEE, (2012).
87.
go back to reference M. Kaynak, M. Wietstruck, R. Scholz, J. Drews, R. Barth, K.E. Ehwald, A. Fox, U. Haak, D. Knoll, and F. Kornd, In 2010 International Electron Devices Meeting, pages 36–5. IEEE, (2010). M. Kaynak, M. Wietstruck, R. Scholz, J. Drews, R. Barth, K.E. Ehwald, A. Fox, U. Haak, D. Knoll, and F. Kornd, In 2010 International Electron Devices Meeting, pages 36–5. IEEE, (2010).
Metadata
Title
Materials Selection Approaches and Fabrication Methods in RF MEMS Switches
Authors
Kurmendra
Rajesh Kumar
Publication date
16-03-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08817-8

Other articles of this Issue 6/2021

Journal of Electronic Materials 6/2021 Go to the issue