Skip to main content
Top
Published in: Journal of Computational Electronics 5/2021

22-08-2021

Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell

Authors: Kaustuv Dasgupta, Anup Mondal, Soma Ray, Utpal Gangopadhyay

Published in: Journal of Computational Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose the design and fabrication of a novel heterojunction semiconductor–insulator–semiconductor (SIS) front surface and interdigitated back-contact (IBC) solar cell. We approximate the performance parameters and loss analysis of the proposed solar cell using MATLAB software programming. Many studies have reported the experimental analysis of amorphous silicon (a-Si) IBC solar cells. A number of silicon heterojunction solar cell designs with promising efficiency have been reported in the past few decades. In this study, a long-lifetime (~ 2 ms) n-Si substrate was considered so that a sufficient number of photogenerated carriers could reach the interdigitated layer and be absorbed. The availability of carriers at the interdigitated back surface was further enhanced by considering a high-low junction created by a ZnO n+ layer at the front surface. A very thin layer of thermally deposited insulator SiO2 was considered between the ZnO and n-Si. This layer reduces the detrimental effects of interface defects. This is the first study in which we have theoretically investigated an IBC solar cell using metal oxide semiconductor layer deposition, thereby avoiding the expensive and complicated doping and diffusion process. In general, a high-concentration n+ layer is doped to create a high-low junction at the front to accelerate the transport of carriers to the back junctions. We propose a cost-effective method using thermal deposition of a SiO2 layer followed by sol–gel ZnO layer deposition, which serves the same purpose as an n+ layer by introducing an SIS junction potential at the front. The interdigitated back surface was designed with sequential n+ a-Si and p+ a-Si vertical junctions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Schwartz R. J., Lammert, M. D.: Silicon solar cells for high concentration applications. In: 1975 International electron devices meeting, Washington, DC, USA, pp. 350-352 (1975) Schwartz R. J., Lammert, M. D.: Silicon solar cells for high concentration applications. In: 1975 International electron devices meeting, Washington, DC, USA, pp. 350-352 (1975)
2.
go back to reference Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Energy Proced. 2, 59–64 (2010)CrossRef Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Energy Proced. 2, 59–64 (2010)CrossRef
3.
go back to reference Bao, J., Liu, A., Lin, Y., Zhou, Y.: An insight into effect of front surface field on the performance of interdigitated back contact silicon heterojunction solar cells. Mater. Chem. Phys. 255, 123625 (2020)CrossRef Bao, J., Liu, A., Lin, Y., Zhou, Y.: An insight into effect of front surface field on the performance of interdigitated back contact silicon heterojunction solar cells. Mater. Chem. Phys. 255, 123625 (2020)CrossRef
4.
go back to reference Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Performance analysis of crystalline-Si solar cell using MATLAB simulation. Mater. Today: Proc. 39(5), 1894–1898 (2021) Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Performance analysis of crystalline-Si solar cell using MATLAB simulation. Mater. Today: Proc. 39(5), 1894–1898 (2021)
6.
go back to reference Dey, B. K., Khan I., Mandal N., Bhattacharjee A.:Mathematical modelling and characteristic analysis of Solar PV Cell. In: 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON), 2016, pp. 1-5 Dey, B. K., Khan I., Mandal N., Bhattacharjee A.:Mathematical modelling and characteristic analysis of Solar PV Cell. In: 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON), 2016, pp. 1-5
7.
go back to reference M. F. Nayan and S. M. S. Ullah, "Modelling of solar cell characteristics considering the effect of electrical and environmental parameter. In: 2015 3rd international conference on green energy and technology (ICGET), 2015, pp. 1–6 M. F. Nayan and S. M. S. Ullah, "Modelling of solar cell characteristics considering the effect of electrical and environmental parameter. In: 2015 3rd international conference on green energy and technology (ICGET), 2015, pp. 1–6
8.
go back to reference Lammert, M.D., Schwartz, R.J.: The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices 24(4), 337–342 (1977)CrossRef Lammert, M.D., Schwartz, R.J.: The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices 24(4), 337–342 (1977)CrossRef
9.
go back to reference Kim, S.M., Chun, S., Kang, M.G., Song, H.-E., Lee, J.-H., Boo, H., Bae, S., Kang, Y., Lee, H.-S., Kim, D.: Simulation of interdigitated back contact solar cell with trench structure. J. Appl. Phys. 117, 074503 (2015)CrossRef Kim, S.M., Chun, S., Kang, M.G., Song, H.-E., Lee, J.-H., Boo, H., Bae, S., Kang, Y., Lee, H.-S., Kim, D.: Simulation of interdigitated back contact solar cell with trench structure. J. Appl. Phys. 117, 074503 (2015)CrossRef
10.
go back to reference Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Mater. Sci. Eng., B 159–160, 291–294 (2009)CrossRef Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Mater. Sci. Eng., B 159–160, 291–294 (2009)CrossRef
11.
go back to reference Ghosh, R., Paul, G.K., Basak, D.: Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Mater. Res. Bull. 40(11), 1905–1914 (2005)CrossRef Ghosh, R., Paul, G.K., Basak, D.: Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Mater. Res. Bull. 40(11), 1905–1914 (2005)CrossRef
12.
go back to reference Hussain, B., Aslam, A., Khan, T.M., Creighton, M., Zohuri, B.: Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)CrossRef Hussain, B., Aslam, A., Khan, T.M., Creighton, M., Zohuri, B.: Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)CrossRef
13.
go back to reference Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F., Steiner, T.: ZnO growth doping & processing. Mater. Today 7(6), 34–40 (2004)CrossRef Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F., Steiner, T.: ZnO growth doping & processing. Mater. Today 7(6), 34–40 (2004)CrossRef
14.
go back to reference Ondo-Ndong, R., Essone-Obame, H., Moussambi, Z.H., et al.: Capacitive properties of zinc oxide thin films by radiofrequency magnetron sputtering. J. Theor. Appl. Phys. 12, 309–317 (2018)CrossRef Ondo-Ndong, R., Essone-Obame, H., Moussambi, Z.H., et al.: Capacitive properties of zinc oxide thin films by radiofrequency magnetron sputtering. J. Theor. Appl. Phys. 12, 309–317 (2018)CrossRef
15.
go back to reference Liehr, M., Lewis, J.E., Rubloff, G.W.: Kinetics of high-temperature thermal decomposition of SiO2 on Si(100). J. Vac. Sci. Technol., A 5, 1559–1562 (1987)CrossRef Liehr, M., Lewis, J.E., Rubloff, G.W.: Kinetics of high-temperature thermal decomposition of SiO2 on Si(100). J. Vac. Sci. Technol., A 5, 1559–1562 (1987)CrossRef
16.
go back to reference Nichiporuk, O., Kaminski, A., Lemiti, M., Fave, A., Skryshevsky, V.: Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation. Sol. Energy Mater. Sol. Cells 86, 517–526 (2005)CrossRef Nichiporuk, O., Kaminski, A., Lemiti, M., Fave, A., Skryshevsky, V.: Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation. Sol. Energy Mater. Sol. Cells 86, 517–526 (2005)CrossRef
17.
go back to reference Fahrner, W.R. (ed.): Amorphous silicon / crystalline silicon heterojunction solar cells springer briefs in applied sciences and technology. Springer-Verlag, Berlin Heidelberg (2013) Fahrner, W.R. (ed.): Amorphous silicon / crystalline silicon heterojunction solar cells springer briefs in applied sciences and technology. Springer-Verlag, Berlin Heidelberg (2013)
18.
go back to reference Bateman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, M.: High quality ion implanted boron emitters in an interdigitated back contact solar cell with 20% efficiency. Energy Proced. 8, 509–514 (2011)CrossRef Bateman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, M.: High quality ion implanted boron emitters in an interdigitated back contact solar cell with 20% efficiency. Energy Proced. 8, 509–514 (2011)CrossRef
19.
go back to reference Schaper, M., Schmidt, J., Plagwitz, H., Brendel, R.: 20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation. Prog. Photovolt: Res. Appl. 13, 381–386 (2005)CrossRef Schaper, M., Schmidt, J., Plagwitz, H., Brendel, R.: 20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation. Prog. Photovolt: Res. Appl. 13, 381–386 (2005)CrossRef
20.
go back to reference McIntosh, K. R., Honsberg, C. The influence of edge recombination on a solar cell's Iv curve (2000) McIntosh, K. R., Honsberg, C. The influence of edge recombination on a solar cell's Iv curve (2000)
21.
go back to reference Muller, R.S., Kamins, T.I.: Device electronics for integrated circuits, 3rd Edition, October 2002 Muller, R.S., Kamins, T.I.: Device electronics for integrated circuits, 3rd Edition, October 2002
23.
go back to reference Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Review on different front surface modification of both n+-p-p+ and p+-n-n+ C- Si solar cell. Mater. Today: Proc. 4(14), 12698–12707 (2017) Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Review on different front surface modification of both n+-p-p+ and p+-n-n+ C- Si solar cell. Mater. Today: Proc. 4(14), 12698–12707 (2017)
24.
go back to reference Ray, S., Mondal, A., Gangopadhyay, U.: Optimization and characterization of silicon nano-grass antireflection layer on textured silicon wafer. Appl. Phys. A 126, 399 (2020)CrossRef Ray, S., Mondal, A., Gangopadhyay, U.: Optimization and characterization of silicon nano-grass antireflection layer on textured silicon wafer. Appl. Phys. A 126, 399 (2020)CrossRef
25.
go back to reference Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt: Res. Appl. 3, 189–192 (1995)CrossRef Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt: Res. Appl. 3, 189–192 (1995)CrossRef
26.
go back to reference Donolato, C.: A reciprocity theorem for charge collection. Appl. Phys. Lett. 46, 270–272 (1985)CrossRef Donolato, C.: A reciprocity theorem for charge collection. Appl. Phys. Lett. 46, 270–272 (1985)CrossRef
27.
go back to reference Donolato, C.: Reciprocity theorem for charge collection by a surface with finite collection velocity: application to grain boundaries. J. Appl. Phys. 76, 959–966 (1994)CrossRef Donolato, C.: Reciprocity theorem for charge collection by a surface with finite collection velocity: application to grain boundaries. J. Appl. Phys. 76, 959–966 (1994)CrossRef
28.
go back to reference Pauwels, H.J., de Visschere, P.: Influence of an insulating layer on the efficiency of a semiconductor-insulator-semiductor (SIS) heterojunction solar cell. Solid-State Electron. 21(4), 693–698 (1978)CrossRef Pauwels, H.J., de Visschere, P.: Influence of an insulating layer on the efficiency of a semiconductor-insulator-semiductor (SIS) heterojunction solar cell. Solid-State Electron. 21(4), 693–698 (1978)CrossRef
29.
go back to reference Shousha, A.H.M.: Performance characteristics of thin film mis solar cells. Sol. Wind Technol. 6(6), 705–712 (1989)CrossRef Shousha, A.H.M.: Performance characteristics of thin film mis solar cells. Sol. Wind Technol. 6(6), 705–712 (1989)CrossRef
30.
go back to reference Ray, S., Pal, B., Ghosh, H., et al.: Effect of induced charges on the performance of different dielecteric layers of c-Si solar cell by experimental and theoretical approach. Silicon 12, 2601–2609 (2020)CrossRef Ray, S., Pal, B., Ghosh, H., et al.: Effect of induced charges on the performance of different dielecteric layers of c-Si solar cell by experimental and theoretical approach. Silicon 12, 2601–2609 (2020)CrossRef
31.
go back to reference Schroder, D.K., Meier, D.L.: Solar cell contact resistance—a review. IEEE Trans. Electron Devices 31(5), 637–647 (1984)CrossRef Schroder, D.K., Meier, D.L.: Solar cell contact resistance—a review. IEEE Trans. Electron Devices 31(5), 637–647 (1984)CrossRef
32.
go back to reference Roy, S., Gupta, R.: Quantitative estimation of shunt resistance in crystalline silicon photovoltaic modules by electroluminescence imaging. IEEE J. Photovolt 9(6), 1741–1747 (2019)CrossRef Roy, S., Gupta, R.: Quantitative estimation of shunt resistance in crystalline silicon photovoltaic modules by electroluminescence imaging. IEEE J. Photovolt 9(6), 1741–1747 (2019)CrossRef
33.
go back to reference Znaidi, L.: Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng., B 174(1–3), 18–30 (2010)CrossRef Znaidi, L.: Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng., B 174(1–3), 18–30 (2010)CrossRef
Metadata
Title
Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell
Authors
Kaustuv Dasgupta
Anup Mondal
Soma Ray
Utpal Gangopadhyay
Publication date
22-08-2021
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01735-2

Other articles of this Issue 5/2021

Journal of Computational Electronics 5/2021 Go to the issue