Skip to main content
Top

2014 | OriginalPaper | Chapter

13. MaxEP and Stable Configurations in Fluid–Solid Interactions

Author : Ashwin Vaidya

Published in: Beyond the Second Law

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review the experimental and theoretical literature on the steady terminal orientation of a body as it settles in a viscous fluid. The terminal orientation of a rigid body is a classic example of a system out of equilibrium. While the dynamical equations are effective in deriving the equilibrium states, they are far too complex and intractable as of yet to resolve questions about the nature of stability of the solutions. The maximum entropy production principle is therefore invoked, as a selection principle, to understand the stable, steady state patterns. Some on-going work and inherent complexities of fluid solid systems are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Viscoelastic fluids are a class of non-Newtonian fluids which display viscosity and elasticity and normal stresses which give rise to ‘memory’ effects, as in elastic solids.
 
2
See [1820] for an introduction to the subject of non-equilibrium thermodynamics.
 
3
The forces may originate from hydrodynamic viscosity, chemical reactions, thermal gradients etc.
 
4
Note that \( \int_{\Upomega_{\infty} } { = \int_{\Upomega } { + \int_{\beta } {} } } .\)
 
5
While the results of our calculations are frame independent, the body frame, if appropriately chosen to align with the natural symmetries of the body, can make the computations considerably simple.
 
6
The intersection of the dark line and shaded region on the paraboloid with a plane parallel to its cross-section in Fig. 13.6 gives the number of allowable states at any given Re.
 
7
The simplistic depiction of \( \mathcal{P} \) in Fig. 13.6 obviously leaves out ‘memory’ terms which become dominant at large Re [9].
 
8
The MEP does not always seem to correspond with the maximum drag state [33] and this is an issue that needs further attention.
 
Literature
1.
go back to reference Kincaid, H.: Routledge encyclopedia of philosophy, Version 1.0. Routledge, London and New York (1998) Kincaid, H.: Routledge encyclopedia of philosophy, Version 1.0. Routledge, London and New York (1998)
2.
go back to reference Schoemaker, P.J.H.: The quest for optimality: A positive heuristic of science? Behav. Brain Sci. 14, 205–245 (1991)CrossRef Schoemaker, P.J.H.: The quest for optimality: A positive heuristic of science? Behav. Brain Sci. 14, 205–245 (1991)CrossRef
3.
go back to reference Leal, L.G.: The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305–337 (1975)CrossRefMATH Leal, L.G.: The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305–337 (1975)CrossRefMATH
4.
go back to reference Cho, K., Cho, Y.I., Park, N.A.: Hydrodynamics of a vertically falling thin cylinder in non-newtonian fluids. J. Non-Newtonian Fluid Mech. 45, 105–145 (1992)MathSciNetCrossRef Cho, K., Cho, Y.I., Park, N.A.: Hydrodynamics of a vertically falling thin cylinder in non-newtonian fluids. J. Non-Newtonian Fluid Mech. 45, 105–145 (1992)MathSciNetCrossRef
5.
go back to reference Chiba, K., Song, K., Horikawa, A.: Motion of a slender body in quiescent polymer solutions. Rheol. Acta 25, 280–388 (1986)CrossRef Chiba, K., Song, K., Horikawa, A.: Motion of a slender body in quiescent polymer solutions. Rheol. Acta 25, 280–388 (1986)CrossRef
6.
go back to reference Joseph, D.D., Liu, Y.J.: Orientation of long bodies falling in a viscoelastic fluid. J. Rheol. 37, 961–983 (1993)MathSciNetCrossRef Joseph, D.D., Liu, Y.J.: Orientation of long bodies falling in a viscoelastic fluid. J. Rheol. 37, 961–983 (1993)MathSciNetCrossRef
7.
go back to reference Galdi, G.P., Vaidya, A.: Translational steady fall of symmetric bodies in Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech. 3, 183–211 (2001)MathSciNetCrossRefMATH Galdi, G.P., Vaidya, A.: Translational steady fall of symmetric bodies in Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech. 3, 183–211 (2001)MathSciNetCrossRefMATH
8.
go back to reference Galdi, G.P., Pokorny, M., Vaidya, A., Joseph, D.D., Feng, J.: Orientation of bodies sedimenting in a second-order liquid at non-zero reynolds number. Math. Models and Methods in the Appl. Sci. 12(11), 1653–1690 (2002)MathSciNetCrossRefMATH Galdi, G.P., Pokorny, M., Vaidya, A., Joseph, D.D., Feng, J.: Orientation of bodies sedimenting in a second-order liquid at non-zero reynolds number. Math. Models and Methods in the Appl. Sci. 12(11), 1653–1690 (2002)MathSciNetCrossRefMATH
9.
go back to reference Galdi, G, P.: On the motion of a rigid body in a viscous fluid: A mathematical analysis with applications, handbook of mathematical fluid mechanics, pp. 653–791. Elsevier Science, Amsterdam (2002) Galdi, G, P.: On the motion of a rigid body in a viscous fluid: A mathematical analysis with applications, handbook of mathematical fluid mechanics, pp. 653–791. Elsevier Science, Amsterdam (2002)
10.
go back to reference Vaidya, A.: A note on the terminal orientation of symmetric bodies in a power-law fluid. Appl. Math. Lett. 18(12), 1332–1338 (2005)MathSciNetCrossRefMATH Vaidya, A.: A note on the terminal orientation of symmetric bodies in a power-law fluid. Appl. Math. Lett. 18(12), 1332–1338 (2005)MathSciNetCrossRefMATH
11.
go back to reference Belmonte, A., Eisenberg, H., Moses, E.: From flutter to tumble: Inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81(2), 345–349 (1998)CrossRef Belmonte, A., Eisenberg, H., Moses, E.: From flutter to tumble: Inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81(2), 345–349 (1998)CrossRef
12.
go back to reference Fields, S.B., Klaus, M., Moore, M.G., Nori, F.: Chaotic dynamics of falling disks. Nature 388, 252–254 (1997)CrossRef Fields, S.B., Klaus, M., Moore, M.G., Nori, F.: Chaotic dynamics of falling disks. Nature 388, 252–254 (1997)CrossRef
13.
go back to reference Tanabe, Y., Kaneko, K.: Behavior of falling paper. Phys. Rev. Lett. 73(10), 1372–1376 (1994)CrossRef Tanabe, Y., Kaneko, K.: Behavior of falling paper. Phys. Rev. Lett. 73(10), 1372–1376 (1994)CrossRef
14.
go back to reference Willmarth, W.W., Hawk, N.E., Galloway, A.J.,Roos, F.W. J. Fluid Mech. 27, 177–207 (1967) Willmarth, W.W., Hawk, N.E., Galloway, A.J.,Roos, F.W. J. Fluid Mech. 27, 177–207 (1967)
15.
go back to reference Camassa, R., Chung, B.J., Howard, P., McLaughlin, R.M., Vaidya, A.: Vortex induced oscillations of cylinders at low and intermediate Reynolds numbers. Sequeira, A., Rannacher, R. (ed.) Advances in mathematical fluid mechanics: A tribute to Giovanni Paolo Galdi, pp. 135–145. Springer Verlag (2010) Camassa, R., Chung, B.J., Howard, P., McLaughlin, R.M., Vaidya, A.: Vortex induced oscillations of cylinders at low and intermediate Reynolds numbers. Sequeira, A., Rannacher, R. (ed.) Advances in mathematical fluid mechanics: A tribute to Giovanni Paolo Galdi, pp. 135–145. Springer Verlag (2010)
16.
go back to reference Cohrs, M., Ernst, W., Galdi, G.P., Vaidya, A., Theory and experiments on oscillating cylinders in a flow, submitted for publication (2012) Cohrs, M., Ernst, W., Galdi, G.P., Vaidya, A., Theory and experiments on oscillating cylinders in a flow, submitted for publication (2012)
18.
go back to reference Prigogine, I.: Introduction to thermodynamics of irreversible processes. Interscience Publishers, New York (1955) Prigogine, I.: Introduction to thermodynamics of irreversible processes. Interscience Publishers, New York (1955)
19.
go back to reference Kreuzer, H.J.: Non-equilibrium thermodynamics and its statistical foundations. Clarendon Press, Oxford (1981) Kreuzer, H.J.: Non-equilibrium thermodynamics and its statistical foundations. Clarendon Press, Oxford (1981)
20.
go back to reference Ottinger, H.C.: Beyond equilibrium thermodynamics. Wiley Interscience, USA (2005)CrossRef Ottinger, H.C.: Beyond equilibrium thermodynamics. Wiley Interscience, USA (2005)CrossRef
21.
go back to reference Biot, M.A.: Variational principles and irreversible thermodynamics with applications to viscoelasticity. Phys. Rev. 97(6), 1463–1469 (1955)MathSciNetCrossRefMATH Biot, M.A.: Variational principles and irreversible thermodynamics with applications to viscoelasticity. Phys. Rev. 97(6), 1463–1469 (1955)MathSciNetCrossRefMATH
22.
go back to reference Ghesselini, R.: Elastic free energy of an upper convected maxwell fluid undergoing fully developed planar poiseuille flow: a variational result. J. Non-Newtonian Fluid Mech. 46, 229–241 (1993)CrossRef Ghesselini, R.: Elastic free energy of an upper convected maxwell fluid undergoing fully developed planar poiseuille flow: a variational result. J. Non-Newtonian Fluid Mech. 46, 229–241 (1993)CrossRef
23.
go back to reference Horne, C., Smith, C.A., Karamcheti, K.: Aeroacoustic and aerodynamic applications of the theory of non-equilibrium thermodynamics, NASA technical paper 3118, June (1991) Horne, C., Smith, C.A., Karamcheti, K.: Aeroacoustic and aerodynamic applications of the theory of non-equilibrium thermodynamics, NASA technical paper 3118, June (1991)
24.
go back to reference Woo, H.-J.: Variational formulation of non-equilibrium thermodynamics for hydrodynamic pattern formation. Phys. Rev. E 66(066104–1), 066104–066105 (2002)CrossRef Woo, H.-J.: Variational formulation of non-equilibrium thermodynamics for hydrodynamic pattern formation. Phys. Rev. E 66(066104–1), 066104–066105 (2002)CrossRef
25.
go back to reference Kawazura, Y., Yoshida, Z.: Entropy production rate in a flux-driven self-organizing system. Phys. Rev. E 82, 066403 (2010)MathSciNetCrossRef Kawazura, Y., Yoshida, Z.: Entropy production rate in a flux-driven self-organizing system. Phys. Rev. E 82, 066403 (2010)MathSciNetCrossRef
26.
go back to reference Ziegler, H.: An introduction to thermodynamics. North-Holland, Amsterdam (1983) Ziegler, H.: An introduction to thermodynamics. North-Holland, Amsterdam (1983)
28.
go back to reference Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRef Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRef
29.
go back to reference Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH
30.
go back to reference Gurtin, M.E., Fried, E., Anand, L.: The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge, UP (2010)CrossRef Gurtin, M.E., Fried, E., Anand, L.: The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge, UP (2010)CrossRef
31.
go back to reference Christen, T.: Application of the maximum entropy production principle to electrical systems. J. Phys. D Appl. Phys. 39, 4497–4503 (2006)CrossRef Christen, T.: Application of the maximum entropy production principle to electrical systems. J. Phys. D Appl. Phys. 39, 4497–4503 (2006)CrossRef
33.
go back to reference Chung, B.J., Vaidya, A.: Non-equilibrium pattern selection in particle sedimentation. Appl. Math. Comput. 218(7), 3451–3465 (2011)MathSciNetCrossRefMATH Chung, B.J., Vaidya, A.: Non-equilibrium pattern selection in particle sedimentation. Appl. Math. Comput. 218(7), 3451–3465 (2011)MathSciNetCrossRefMATH
34.
go back to reference Morrison, F.A.: Understanding rheology, Oxford University Press, Oxford (2001) Morrison, F.A.: Understanding rheology, Oxford University Press, Oxford (2001)
35.
go back to reference Larson, R.: The structure and rheology of complex fluids, Oxford University Press, Oxford (1999) Larson, R.: The structure and rheology of complex fluids, Oxford University Press, Oxford (1999)
36.
go back to reference Massoudi, M.: On the heat flux vector for flowing granular materials Part I: Effective thermal conductivity and background. Math. Meth. Appl. Sci. 29, 15851598 (2006) Massoudi, M.: On the heat flux vector for flowing granular materials Part I: Effective thermal conductivity and background. Math. Meth. Appl. Sci. 29, 15851598 (2006)
37.
go back to reference Lorenz, E.: Generation of available potential energy and the intensity of the general circulation. Scientific Report No. 1, UCLA, Dept. of Meteorology, July (1955) Lorenz, E.: Generation of available potential energy and the intensity of the general circulation. Scientific Report No. 1, UCLA, Dept. of Meteorology, July (1955)
38.
go back to reference Ozawa, H., Ohmaru, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and global climate system: A review of the maximum entropy production principle. Rev. of Geophys. 41(4), 1–24 (2003)CrossRef Ozawa, H., Ohmaru, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and global climate system: A review of the maximum entropy production principle. Rev. of Geophys. 41(4), 1–24 (2003)CrossRef
39.
go back to reference Kleidon, A.: The atmospheric circulation and states of maximum entropy production, Geophys. Res. Lett., 30(23) 2223 (2003) Kleidon, A.: The atmospheric circulation and states of maximum entropy production, Geophys. Res. Lett., 30(23) 2223 (2003)
40.
go back to reference Chwang, A.T., Wu, T.Y.: Hydromechanics of low-reynolds-number flow. Part 2. singularity method for stokes flows. J. Fluid Mech. 45, 105–145 (1992) Chwang, A.T., Wu, T.Y.: Hydromechanics of low-reynolds-number flow. Part 2. singularity method for stokes flows. J. Fluid Mech. 45, 105–145 (1992)
41.
go back to reference Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)CrossRef Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)CrossRef
42.
go back to reference Malek, J., Rajagopal, K.R.: On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38, 233–242 (2006)CrossRef Malek, J., Rajagopal, K.R.: On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38, 233–242 (2006)CrossRef
43.
go back to reference Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef
44.
go back to reference Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104, 651654 (2007)CrossRef Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104, 651654 (2007)CrossRef
45.
go back to reference Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef
46.
go back to reference Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermodyn. 35, 347–378 (2010)CrossRefMATH Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermodyn. 35, 347–378 (2010)CrossRefMATH
47.
go back to reference Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy ex-change, Q. J. R. Meteorol. Soc. 101, 475 (1975); Nature (London) 279, 630 (1979) Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy ex-change, Q. J. R. Meteorol. Soc. 101, 475 (1975); Nature (London) 279, 630 (1979)
48.
go back to reference Paulus Jr, D.M., Gaggioli, R.A.: Some observations of entropy extrema in fluid flow. Energy 29, 28472500 (2004)CrossRef Paulus Jr, D.M., Gaggioli, R.A.: Some observations of entropy extrema in fluid flow. Energy 29, 28472500 (2004)CrossRef
49.
go back to reference Happel, V., Brenner, H.: Low reynolds number hydrodynamics. Prentice Hall, New Jersey (1965) Happel, V., Brenner, H.: Low reynolds number hydrodynamics. Prentice Hall, New Jersey (1965)
50.
go back to reference Swenson, R.: Autocatakinetics, yes-autopoiesis, no: steps toward a unified theory of evolutionary ordering. Int. J. General Syst. 21, 207–228 (1992)CrossRef Swenson, R.: Autocatakinetics, yes-autopoiesis, no: steps toward a unified theory of evolutionary ordering. Int. J. General Syst. 21, 207–228 (1992)CrossRef
51.
go back to reference Beretta, G.P., Sc.D. thesis, M.I.T., (un published), e-print quant-ph/0509116 (1981) Beretta, G.P., Sc.D. thesis, M.I.T., (un published), e-print quant-ph/0509116 (1981)
52.
go back to reference Beretta, G.P.: A nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution. Phys. Rev. E 73, 026113 (2006)MathSciNetCrossRef Beretta, G.P.: A nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution. Phys. Rev. E 73, 026113 (2006)MathSciNetCrossRef
53.
54.
go back to reference Beretta, G.P.: Quantum thermodynamics: a new equation of motion for a single constituent of matter. Nuovo Cimento B 82, 169 (1984)MathSciNetCrossRef Beretta, G.P.: Quantum thermodynamics: a new equation of motion for a single constituent of matter. Nuovo Cimento B 82, 169 (1984)MathSciNetCrossRef
55.
go back to reference Vaidya, A.: Steady fall of bodies of arbitrary shape in a second-order fluid at zero Reynolds numbers. Japan J. Ind. Appl. Math., 21(3), 299–321 (2004) Vaidya, A.: Steady fall of bodies of arbitrary shape in a second-order fluid at zero Reynolds numbers. Japan J. Ind. Appl. Math., 21(3), 299–321 (2004)
56.
go back to reference Chung, B.J., Vaidya, A.: On the slow motion of a sphere in fluids with non-constant viscosities. Int. J. Eng. Sci. 48(1), 78–100 (2010)MathSciNetCrossRefMATH Chung, B.J., Vaidya, A.: On the slow motion of a sphere in fluids with non-constant viscosities. Int. J. Eng. Sci. 48(1), 78–100 (2010)MathSciNetCrossRefMATH
57.
go back to reference Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 24012404 (1993)CrossRef Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 24012404 (1993)CrossRef
58.
go back to reference Glansdorff, P., Prigogine, I.: Thermodynamics of structure, Stability and Fluctuations. Wiley-Interscience, New York (1971) Glansdorff, P., Prigogine, I.: Thermodynamics of structure, Stability and Fluctuations. Wiley-Interscience, New York (1971)
59.
go back to reference Morita, H.: Collective oscillation in two-dimensional fluid, arXiv:1103.1140, March (2011) Morita, H.: Collective oscillation in two-dimensional fluid, arXiv:1103.1140, March (2011)
60.
61.
go back to reference Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)CrossRef Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)CrossRef
62.
go back to reference Chung, B.J., McDermid, K., Vaidya, A.: On the affordances of the MEP principle, in preparation (2012) Chung, B.J., McDermid, K., Vaidya, A.: On the affordances of the MEP principle, in preparation (2012)
63.
go back to reference Feuer, L.S.: The principle of simplicity. Philos. Sci. 24(2), 109–122 (1957)CrossRef Feuer, L.S.: The principle of simplicity. Philos. Sci. 24(2), 109–122 (1957)CrossRef
64.
go back to reference Kleidon, A.: How does the earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?, arXiv:1103.2014v2 (2011) Kleidon, A.: How does the earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?, arXiv:1103.2014v2 (2011)
Metadata
Title
MaxEP and Stable Configurations in Fluid–Solid Interactions
Author
Ashwin Vaidya
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_13