Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 1/2020

20-07-2019 | Research Article - Chemistry

MCNT-Reinforced Na3Fe2(PO4)3 as Cathode Material for Sodium-Ion Batteries

Authors: Xiuping Xia, Yongjie Cao, Liu Yao, Haishen Yang, Junxi Zhang

Published in: Arabian Journal for Science and Engineering | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An iron-based phosphate composite (Na3Fe2(PO4)3@MCNT) has been synthesized by solid-state reaction method. As a sodium-ion battery cathode material, Na3Fe2(PO4)3@MCNT composite exhibits excellent reversible specific capacity of 101 mA h g−1 at 10 mA g−1 (0.1 C) and can reach high rate capability up to 96 mA h g−1 after 500 cycles at 100 mA g−1 (1 C). The enhanced sodium-ion storage performance of iron-based phosphate is likely attributed to the increased electronic conductivity and intercalation–deintercalation kinetic of sodium-ion with a high sodium-ion diffusion coefficient of up to 1.12 × 10−10 cm2 s−1 by incorporation of multi-walled carbon nanotube (MCNT).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y.: Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 48 (2017) Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y.: Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 48 (2017)
2.
go back to reference Jamesh, M.I.; Prakash, A.S.: Advancement of technology towards developing Na-ion batteries. J. Power Sources 378, 268–300 (2018) Jamesh, M.I.; Prakash, A.S.: Advancement of technology towards developing Na-ion batteries. J. Power Sources 378, 268–300 (2018)
3.
go back to reference Kang, W.; Wang, Y.; Xu, J.: Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 5, 7667–7690 (2017) Kang, W.; Wang, Y.; Xu, J.: Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 5, 7667–7690 (2017)
4.
go back to reference Meng, X.: Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 5, 10127–10149 (2017) Meng, X.: Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 5, 10127–10149 (2017)
5.
go back to reference Ren, W.; Zhu, Z.; An, Q.; Mai, L.: Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13, 23 (2017) Ren, W.; Zhu, Z.; An, Q.; Mai, L.: Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13, 23 (2017)
6.
go back to reference Zhu, Y.; Choi, S.H.; Fan, X.; Shin, J.; Ma, Z.; Zachariah, M.R.; Choi, J.W.; Wang, C.: Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7, 1601578 (2017) Zhu, Y.; Choi, S.H.; Fan, X.; Shin, J.; Ma, Z.; Zachariah, M.R.; Choi, J.W.; Wang, C.: Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7, 1601578 (2017)
7.
go back to reference Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. 57, 102–120 (2018) Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. 57, 102–120 (2018)
8.
go back to reference Chen, Z.; Du, B.; Xu, M.; Zhu, H.; Li, L.; Wang, W.: Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics. Electrochim. Acta 109, 262–268 (2013) Chen, Z.; Du, B.; Xu, M.; Zhu, H.; Li, L.; Wang, W.: Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics. Electrochim. Acta 109, 262–268 (2013)
9.
go back to reference Tang, K.; Yu, X.; Sun, J.; Li, H.; Huang, X.: Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56, 4869–4875 (2011) Tang, K.; Yu, X.; Sun, J.; Li, H.; Huang, X.: Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56, 4869–4875 (2011)
10.
go back to reference Wen, J.W.; Liu, H.J.; Wu, H.; Chen, C.H.: Synthesis and electrochemical characterization of LiCo1/3Ni1/3Mn1/3O2 by radiated polymer gel method. J. Mater. Sci. 42, 7696–7701 (2007) Wen, J.W.; Liu, H.J.; Wu, H.; Chen, C.H.: Synthesis and electrochemical characterization of LiCo1/3Ni1/3Mn1/3O2 by radiated polymer gel method. J. Mater. Sci. 42, 7696–7701 (2007)
11.
go back to reference Skundin, A.M.; Kulova, T.L.; Yaroslavtsev, A.B.: Sodium-ion batteries (a review). Russ. J. Electrochem. 54, 113–152 (2018) Skundin, A.M.; Kulova, T.L.; Yaroslavtsev, A.B.: Sodium-ion batteries (a review). Russ. J. Electrochem. 54, 113–152 (2018)
12.
go back to reference Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C.: Energy storage system: current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018) Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C.: Energy storage system: current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018)
13.
go back to reference Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J.: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014) Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J.: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014)
14.
go back to reference Jiang, Y.; Zhang, H.; Yang, H.; Qi, Z.; Yu, Y.: Na3V2(PO4)3@nitrogen, sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. Nanoscale 9, 6048–6055 (2017) Jiang, Y.; Zhang, H.; Yang, H.; Qi, Z.; Yu, Y.: Na3V2(PO4)3@nitrogen, sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. Nanoscale 9, 6048–6055 (2017)
15.
go back to reference Singh, P.; Shiva, K.; Celio, H.; Goodenough, J.B.: Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 8, 3000–3005 (2015) Singh, P.; Shiva, K.; Celio, H.; Goodenough, J.B.: Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 8, 3000–3005 (2015)
16.
go back to reference Shiva, K.; Singh, P.; Zhou, W.; Goodenough, J.B.: NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ. Sci. 9, 3103–3106 (2016) Shiva, K.; Singh, P.; Zhou, W.; Goodenough, J.B.: NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ. Sci. 9, 3103–3106 (2016)
17.
go back to reference Zhao, T.; Li, L.; Chen, S.; et al.: The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J. Power Sources 245, 898–907 (2014) Zhao, T.; Li, L.; Chen, S.; et al.: The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J. Power Sources 245, 898–907 (2014)
18.
go back to reference Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S.: Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain. Chem. Eng. 5, 1306–1314 (2016) Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S.: Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain. Chem. Eng. 5, 1306–1314 (2016)
19.
go back to reference Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997) Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)
20.
go back to reference Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Yang, H.: Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 7177–7184 (2017) Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Yang, H.: Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 7177–7184 (2017)
21.
go back to reference Kapaev, R.R.; Chekannikov, A.A.; Novikova, S.A.; Kulova, T.L.; Skundin, A.M.; Yaroslavtsev, A.B.: Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries. Mendeleev Commun. 27, 263–264 (2017) Kapaev, R.R.; Chekannikov, A.A.; Novikova, S.A.; Kulova, T.L.; Skundin, A.M.; Yaroslavtsev, A.B.: Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries. Mendeleev Commun. 27, 263–264 (2017)
22.
go back to reference Kim, H.H.; Yu, I.H.; Kim, H.S.; Koo, H.J.; Whangbo, M.H.: On why the two polymorphs of NaFePO4 exhibit widely different magnetic structures: density functional analysis. Inorg. Chem. 54, 4966–4971 (2015) Kim, H.H.; Yu, I.H.; Kim, H.S.; Koo, H.J.; Whangbo, M.H.: On why the two polymorphs of NaFePO4 exhibit widely different magnetic structures: density functional analysis. Inorg. Chem. 54, 4966–4971 (2015)
23.
go back to reference Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D.G.: Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J. Mater. Chem. A 3, 8265–8271 (2015) Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D.G.: Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J. Mater. Chem. A 3, 8265–8271 (2015)
24.
go back to reference Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015) Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)
25.
go back to reference Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014) Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014)
26.
go back to reference Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015) Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)
27.
go back to reference Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014) Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014)
28.
go back to reference Liu, Y.; Zhou, Y.; Zhang, J.; Zhang, S.; Ren, P.: Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J. Solid State Electrochem. 2, 479–487 (2015) Liu, Y.; Zhou, Y.; Zhang, J.; Zhang, S.; Ren, P.: Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J. Solid State Electrochem. 2, 479–487 (2015)
29.
go back to reference Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W.A.; Kang, K.: Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 8, 540–545 (2015) Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W.A.; Kang, K.: Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 8, 540–545 (2015)
30.
go back to reference Kim, H.; Shakoor, R.A.; Park, C.; Lim, S.Y.; Kim, J.-S.; Jo, Y.N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J.W.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013) Kim, H.; Shakoor, R.A.; Park, C.; Lim, S.Y.; Kim, J.-S.; Jo, Y.N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J.W.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013)
31.
go back to reference Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017) Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017)
32.
go back to reference Barpanda, P.; Liu, G.; Ling, C.D.; Tamaru, M.; Avdeev, M.; Chung, S.C.; Yamada, Y.; Yamada, A.: Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25, 3480–3487 (2013) Barpanda, P.; Liu, G.; Ling, C.D.; Tamaru, M.; Avdeev, M.; Chung, S.C.; Yamada, Y.; Yamada, A.: Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25, 3480–3487 (2013)
33.
go back to reference Chen, X.; Du, K.; Lai, Y.; et al.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017) Chen, X.; Du, K.; Lai, Y.; et al.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017)
34.
go back to reference Fang, Y.; Liu, Q.; Xiao, L.; et al.: A high-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for na ion batteries. ACS Appl. Mater. Interfaces. 31, 17977–17989 (2015) Fang, Y.; Liu, Q.; Xiao, L.; et al.: A high-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for na ion batteries. ACS Appl. Mater. Interfaces. 31, 17977–17989 (2015)
35.
go back to reference Cao, Y.; Liu, Y.; Chen, T.; Xia, X.; Zhang, L.; Zhang, J.; Xia, Y.: Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics 3, 1083–1090 (2019) Cao, Y.; Liu, Y.; Chen, T.; Xia, X.; Zhang, L.; Zhang, J.; Xia, Y.: Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics 3, 1083–1090 (2019)
36.
go back to reference Lepage, D.; Sobh, F.; Kuss, C.; Liang, G.; Schougaard, S.B.: Delithiation kinetics study of carbon coated and carbon free LiFePO4. J. Power Sources 256, 61–65 (2014) Lepage, D.; Sobh, F.; Kuss, C.; Liang, G.; Schougaard, S.B.: Delithiation kinetics study of carbon coated and carbon free LiFePO4. J. Power Sources 256, 61–65 (2014)
37.
go back to reference Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.Y.; et al.: A high voltage cathode of Na2+2xFe2–x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J. Mater. Chem. A 6, 4354–4364 (2018) Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.Y.; et al.: A high voltage cathode of Na2+2xFe2–x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J. Mater. Chem. A 6, 4354–4364 (2018)
38.
go back to reference Sun, A.; Beck, F.R.; Haynes, D.; Poston, J.A.; Narayanan, S.R.; Kumta, P.N.; Manivannan, A.: Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Eng., B 177, 1729–1733 (2012) Sun, A.; Beck, F.R.; Haynes, D.; Poston, J.A.; Narayanan, S.R.; Kumta, P.N.; Manivannan, A.: Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Eng., B 177, 1729–1733 (2012)
39.
go back to reference Kim, H.; Shakoor, R.A.; Park, C.; et al.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013) Kim, H.; Shakoor, R.A.; Park, C.; et al.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013)
40.
go back to reference Yanjun, C.; Youlong, X.; Xiaofei, S.; et al.: F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 397, 307–317 (2018) Yanjun, C.; Youlong, X.; Xiaofei, S.; et al.: F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 397, 307–317 (2018)
41.
go back to reference Li, L.; Liu, X.; Tang, L.; Liu, H.; Wang, Y.G.: Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. J. Alloys Compd. 790, 203–211 (2019) Li, L.; Liu, X.; Tang, L.; Liu, H.; Wang, Y.G.: Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. J. Alloys Compd. 790, 203–211 (2019)
42.
go back to reference Guan, W.; Pan, B.; Zhou, P.; et al.: A high capacity, good safety and low cost Na2FeSiO4-based cathode for rechargeable sodium-ion battery. ACS Appl. Mater. Interfaces. 27, 22369–22377 (2017) Guan, W.; Pan, B.; Zhou, P.; et al.: A high capacity, good safety and low cost Na2FeSiO4-based cathode for rechargeable sodium-ion battery. ACS Appl. Mater. Interfaces. 27, 22369–22377 (2017)
Metadata
Title
MCNT-Reinforced Na3Fe2(PO4)3 as Cathode Material for Sodium-Ion Batteries
Authors
Xiuping Xia
Yongjie Cao
Liu Yao
Haishen Yang
Junxi Zhang
Publication date
20-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 1/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03979-4

Other articles of this Issue 1/2020

Arabian Journal for Science and Engineering 1/2020 Go to the issue

Premium Partners