Skip to main content
Top
Published in: Journal of Materials Science 44/2022

09-11-2022 | Metals & corrosion

Measurement and simulation of residual stresses in transient liquid phase bonded ferritic steels

Authors: Nicolás Di Luozzo, Sandra Cabeza, Michel Boudard, Marcelo Fontana

Published in: Journal of Materials Science | Issue 44/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ferritic steel bars—25 mm in diameter—were welded by transient liquid phase bonding (TLPB) using Fe-based amorphous metallic foils as filler material. The resulting residual stress (RS) field shows a low peak magnitude—of 147 MPa—as measured by neutron diffraction. The most distinctive feature of TLPB is the heat input delivered simultaneously at the whole joint that allows much lower cooling rates compared with arc welding (AW). Therefore, the elapsed time between 800 and 500 °C (t 8/5) was particularly long reaching 390 s. As a result, a low RS peak magnitude (147 MPa) was obtained in the as-welded condition. This value is well below the RS peak magnitude obtained with AW which typically attain the yield strength of the base metal (276 MPa). The numerical simulation of RS at the welded bars was performed by a thermal and mechanical analysis. It shows that TLPB produced a large austenized region, low cooling rates and a remarkable t 8/5. Consequently, the large volume in which the heat input is delivered is the driving force to reduce RS peak magnitudes. From the mechanical analysis, it was found that the simulated RS was in good agreement with the measured RS. Therefore, the proposed numerical simulation model can be used to predict RS in TLPB weldments.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
It is worth noting that the usefulness of measuring RS by ND depends on the specimen dimensions. For small specimens, the gauge volume for ND can be very large (e.g.: It may capture both the fusion zone and the heat affected zone).
 
2
AC1 is the temperature which corresponds to the boundary between the ferrite-cementite field and the fields containing austenite and ferrite, while AC3 is the temperature which corresponds to the boundary between the ferrite-austenite and austenite fields (during heating of ferritic steels).
 
Literature
7.
go back to reference Duvall DS, Owczarski WA, Paulonis DF (1974) TLP bonding: a new method for joining heat resistant alloys. Weld J 53:203–214 Duvall DS, Owczarski WA, Paulonis DF (1974) TLP bonding: a new method for joining heat resistant alloys. Weld J 53:203–214
8.
go back to reference Kaplan D, Murry G (2008) Thermal, metallurgical and mechanical phenomena in the heat affected zone. Metallurgy and mechanics of welding. ISTE, London, pp 89–131CrossRef Kaplan D, Murry G (2008) Thermal, metallurgical and mechanical phenomena in the heat affected zone. Metallurgy and mechanics of welding. ISTE, London, pp 89–131CrossRef
9.
go back to reference Fitzpatrick ME, Lodini A (2003) Analysis of residual stress by diffraction using neutron and synchrotron radiation. CRC Press, LondonCrossRef Fitzpatrick ME, Lodini A (2003) Analysis of residual stress by diffraction using neutron and synchrotron radiation. CRC Press, LondonCrossRef
10.
go back to reference Withers PJ (2013) Synchrotron X-ray diffraction. Practical residual stress measurement methods. John Wiley & Sons Ltd, Chichester, pp 163–194CrossRef Withers PJ (2013) Synchrotron X-ray diffraction. Practical residual stress measurement methods. John Wiley & Sons Ltd, Chichester, pp 163–194CrossRef
14.
go back to reference ISO 21432:2019 (2019) Non-destructive testing—standard test method for determining residual stresses by neutron diffraction ISO 21432:2019 (2019) Non-destructive testing—standard test method for determining residual stresses by neutron diffraction
16.
go back to reference Behnken H, Hauk V (1986) Berechnung der roentgenographischen Elastizitaetskonstanten (REK) des Vielkristalls aus den Einkristalldaten fuer beliebige Kristallsymmetrie. Zeitschrift für Met 77:620–626 Behnken H, Hauk V (1986) Berechnung der roentgenographischen Elastizitaetskonstanten (REK) des Vielkristalls aus den Einkristalldaten fuer beliebige Kristallsymmetrie. Zeitschrift für Met 77:620–626
18.
go back to reference Hutchings MT, Withers PJ, Holden TM, Lorentzen T (2005) Introduction to the characterization of residual stress by neutron diffraction. CRC Press, Boca RatonCrossRef Hutchings MT, Withers PJ, Holden TM, Lorentzen T (2005) Introduction to the characterization of residual stress by neutron diffraction. CRC Press, Boca RatonCrossRef
20.
go back to reference Ueda Y, Murakawa H, Ma N (2012) Chapter 3—mechanical simulation of welding. In: Ueda Y, Murakawa H, Ma N (eds) Welding deformation and residual stress prevention. Butterworth-Heinemann, Boston, pp 55–98CrossRef Ueda Y, Murakawa H, Ma N (2012) Chapter 3—mechanical simulation of welding. In: Ueda Y, Murakawa H, Ma N (eds) Welding deformation and residual stress prevention. Butterworth-Heinemann, Boston, pp 55–98CrossRef
24.
go back to reference Labridis D, Dokopoulos P (1989) Calculation of eddy current losses in nonlinear ferromagnetic materials. IEEE Trans Magn 25:2665–2669CrossRef Labridis D, Dokopoulos P (1989) Calculation of eddy current losses in nonlinear ferromagnetic materials. IEEE Trans Magn 25:2665–2669CrossRef
27.
go back to reference BS EN 1993-1-2:2005 (2005) Eurocode 3: design of steel structures - Part 1–2: General rules - structural fire design BS EN 1993-1-2:2005 (2005) Eurocode 3: design of steel structures - Part 1–2: General rules - structural fire design
30.
go back to reference Raithby GD, Hollands KGT (1975) A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems. In: Irvine TF, Hartnett JP (eds). Elsevier, Amsterdam, pp 265–315 Raithby GD, Hollands KGT (1975) A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems. In: Irvine TF, Hartnett JP (eds). Elsevier, Amsterdam, pp 265–315
31.
go back to reference de Souza NE, Perić D, Owen D (2008) Finite elements in small-strain plasticity problems. Computational methods for plasticity. John Wiley & Sons Ltd, Chichester, pp 191–263 de Souza NE, Perić D, Owen D (2008) Finite elements in small-strain plasticity problems. Computational methods for plasticity. John Wiley & Sons Ltd, Chichester, pp 191–263
35.
go back to reference Chandler H (1995) Heat treater’s guide: practices and procedures for irons and steels, 2nd ed. In: ASM international, materials Park, Ohio Chandler H (1995) Heat treater’s guide: practices and procedures for irons and steels, 2nd ed. In: ASM international, materials Park, Ohio
36.
go back to reference O’Brien A (2004) Welding handbook, vol 2. American Welding Society, Miami O’Brien A (2004) Welding handbook, vol 2. American Welding Society, Miami
Metadata
Title
Measurement and simulation of residual stresses in transient liquid phase bonded ferritic steels
Authors
Nicolás Di Luozzo
Sandra Cabeza
Michel Boudard
Marcelo Fontana
Publication date
09-11-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 44/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07911-4

Other articles of this Issue 44/2022

Journal of Materials Science 44/2022 Go to the issue

Premium Partners