Skip to main content
Top
Published in: Cellulose 1/2018

02-11-2017 | Original Paper

Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper

Authors: Cristina Campano, Noemí Merayo, Ana Balea, Quim Tarrés, Marc Delgado-Aguilar, Pere Mutjé, Carlos Negro, Ángeles Blanco

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of nanocelluloses as strength-enhancing additives in papermaking is widely known since both cellulose nanofibers (CNF) and nanocrystals (CNC) present similar composition than paper but their exceptional properties in the nanometer scale confers a paper quality enhancement. However, some agglomeration problems in CNF and CNC through hydrogen bonding cause a lower improvement of mechanical properties of paper. Therefore, a better dispersion of both nanocelluloses can maximize their effect on paper properties, thus reducing the needed dose to get the same increment in tensile strength and then reducing material costs. To ease the implementation of these nanocelluloses in the production process of recycled paper, typically used operations of these industries have been used. Among them, those devoted to improve the homogeneous mixture of nanocellulose in the pulp suspension have been assessed. Firstly, pulping conditions were studied, including pulping time, temperature and need for soaking as variables. Secondly, some dispersing agents used in papermaking were considered, studying the effect of different types and doses. The highest tensile strength of paper was achieved by applying long pulping times (60 min), getting increments up to 30% with the use of soaking and polyacrylamide as retention system. However, with the use of a low dose of a dispersing agent (0.003%), tensile index can be still increased up to 20.6% avoiding these long times. This study can be of great interest of those researchers trying to implement the use of nanocelluloses as strength additive in papermaking.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahola S, Myllytie P, Osterberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3:1315–1328 Ahola S, Myllytie P, Osterberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3:1315–1328
go back to reference Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016a) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11:8123–8138 Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016a) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11:8123–8138
go back to reference Balea A, Merayo N, Fuente E, Delgado-Aguilar M, Mutje P, Blanco A, Negro C (2016b) Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources 11:3416–3431 Balea A, Merayo N, Fuente E, Delgado-Aguilar M, Mutje P, Blanco A, Negro C (2016b) Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources 11:3416–3431
go back to reference Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166CrossRef Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166CrossRef
go back to reference Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef
go back to reference Campano C, Miranda R, Merayo N, Negro C, Blanco A (2017) Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr Polym 173:489–496CrossRef Campano C, Miranda R, Merayo N, Negro C, Blanco A (2017) Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr Polym 173:489–496CrossRef
go back to reference CEPI (2015). Key statistics. European Pulp and Paper Industry CEPI (2015). Key statistics. European Pulp and Paper Industry
go back to reference Chen LH, Wang QQ, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef Chen LH, Wang QQ, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef
go back to reference Coccia V, Cotana F, Cavalaglio G, Gelosia M, Petrozzi A (2014) Cellulose nanocrystals obtained from Cynara cardunculus and their application in the paper industry. Sustainability 6:5252–5264CrossRef Coccia V, Cotana F, Cavalaglio G, Gelosia M, Petrozzi A (2014) Cellulose nanocrystals obtained from Cynara cardunculus and their application in the paper industry. Sustainability 6:5252–5264CrossRef
go back to reference Delgado-Aguilar M, Gonzalez I, Pelach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef Delgado-Aguilar M, Gonzalez I, Pelach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef
go back to reference Fatehi P, Kititerakun R, Ni YH, Xiao HN (2010) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80:208–214CrossRef Fatehi P, Kititerakun R, Ni YH, Xiao HN (2010) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80:208–214CrossRef
go back to reference Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882CrossRef Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Gonzalez I, Boufi S, Pelach MA, Alcala M, Vilaseca F, Mutje P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef Gonzalez I, Boufi S, Pelach MA, Alcala M, Vilaseca F, Mutje P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Cellulose 43:1519–1542 Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Cellulose 43:1519–1542
go back to reference Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
go back to reference Heitner C (1993) Light-induced yellowing of wood-containing papers—an evolution of the mechanism. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials, vol 531. ACS symposium series. American Chemical Society, Washington, pp 2–25CrossRef Heitner C (1993) Light-induced yellowing of wood-containing papers—an evolution of the mechanism. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials, vol 531. ACS symposium series. American Chemical Society, Washington, pp 2–25CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef
go back to reference Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763CrossRef Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763CrossRef
go back to reference Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Die Angew Makromol Chem 72:161–171CrossRef Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Die Angew Makromol Chem 72:161–171CrossRef
go back to reference Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017a) Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers. Cellulose 24:677–692CrossRef Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017a) Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers. Cellulose 24:677–692CrossRef
go back to reference Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017b) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24:2987–3000CrossRef Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017b) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24:2987–3000CrossRef
go back to reference Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRef Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRef
go back to reference Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318CrossRef Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318CrossRef
go back to reference Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef
go back to reference Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef
go back to reference Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Suhr M, Klein G, Kourti I, Rodrigo Gonzalo M, Giner Santonja G, Roudier S, Delgado Sancho L (2015) Best available techniques (BAT) reference document for the production of pulp, paper and board. Institute for Prospective Technological Studies, Seville. https://doi.org/10.2791/370629 CrossRef Suhr M, Klein G, Kourti I, Rodrigo Gonzalo M, Giner Santonja G, Roudier S, Delgado Sancho L (2015) Best available techniques (BAT) reference document for the production of pulp, paper and board. Institute for Prospective Technological Studies, Seville. https://​doi.​org/​10.​2791/​370629 CrossRef
go back to reference Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146CrossRef Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146CrossRef
go back to reference Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef
go back to reference Tasman JE, Berzins V (1957) The permanganate consumption of pulp materials. Tappi 40:691–704 Tasman JE, Berzins V (1957) The permanganate consumption of pulp materials. Tappi 40:691–704
Metadata
Title
Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper
Authors
Cristina Campano
Noemí Merayo
Ana Balea
Quim Tarrés
Marc Delgado-Aguilar
Pere Mutjé
Carlos Negro
Ángeles Blanco
Publication date
02-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1552-y

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue