Skip to main content
Top
Published in: Cellulose 4/2014

01-08-2014 | Original Paper

Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts

Authors: Nasim Farahbakhsh, Richard A. Venditti, Jesse S. Jur

Published in: Cellulose | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermal and mechanical performance of composites with nano-sized cotton fillers embedded in low-density polyethylene (LDPE) is investigated. Microfibrillated cotton was prepared by microgrinding mechanical treatment of pulverized cotton (pCot) derived from waste T-shirts, resulting in nano-sized fibrils of the cellulose that retain high crystallinity. Film composites of LDPE with pCot before and after microgrinding were fabricated through melt extrusion and the effect of filler size on mechanical, thermal and morphological properties of the composite was investigated. Compounding microfibrillated cotton with LDPE resulted in well-dispersed nanocomposites with no discoloration after 10 min of melt extrusion at 170 °C. At concentrations up to 10 % by weight, the composites showed increased modulus, increased tensile strength and a slight decrease in elongation to break. Further improvement in the dispersion and mechanical properties of the cotton-based fillers was realized by the use of LDPE powder instead of polymer pellets fed to the extruder. This research demonstrates the processing and applicability of the use of recycled cotton-based nano-sized fillers in melt-processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal UP, Reiner RS, Filpponen I, Isogai A, Argyropoulos DS (2010) Crystallinities of nanocrystalline and nanofibrillated celluloses by FT- raman spectroscopy. In: TAPPI international conference on nanotechnology for the forest product industry. TAPPI, Helsniki Agarwal UP, Reiner RS, Filpponen I, Isogai A, Argyropoulos DS (2010) Crystallinities of nanocrystalline and nanofibrillated celluloses by FT- raman spectroscopy. In: TAPPI international conference on nanotechnology for the forest product industry. TAPPI, Helsniki
go back to reference Ben Azouz K, Ramires EC et al (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRef Ben Azouz K, Ramires EC et al (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240CrossRef
go back to reference Ben Mabrouk A, Kaddami H et al (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19(3):843–853CrossRef Ben Mabrouk A, Kaddami H et al (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19(3):843–853CrossRef
go back to reference Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630 Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630
go back to reference Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A Appl Sci Manuf 38(12):2486–2492 Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A Appl Sci Manuf 38(12):2486–2492
go back to reference Bras J, Viet D et al (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84(1):211–215CrossRef Bras J, Viet D et al (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84(1):211–215CrossRef
go back to reference de Menezes AJ, Siqueira G et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef de Menezes AJ, Siqueira G et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef
go back to reference Dufresne A (2012) Nanocellulose : from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRef Dufresne A (2012) Nanocellulose : from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRef
go back to reference Eichhorn SJ, Dufresne A et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn SJ, Dufresne A et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
go back to reference Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef
go back to reference Gupta KK (2010) Polymer nanocomposite handbook. Taylor & Francis Group, New York Gupta KK (2010) Polymer nanocomposite handbook. Taylor & Francis Group, New York
go back to reference Jonoobi M, Harun J et al (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRef Jonoobi M, Harun J et al (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRef
go back to reference Jonoobi M, Mathew AP et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRef Jonoobi M, Mathew AP et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRef
go back to reference Ku H, Wang H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42(4):856–873CrossRef Ku H, Wang H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42(4):856–873CrossRef
go back to reference Ljungberg N, Cavaille JY et al (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292CrossRef Ljungberg N, Cavaille JY et al (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292CrossRef
go back to reference Lu J, Askeland P et al (2008a) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef Lu J, Askeland P et al (2008a) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef
go back to reference Lu J, Wang T et al (2008b) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl Sci Manuf 39(5):738–746CrossRef Lu J, Wang T et al (2008b) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl Sci Manuf 39(5):738–746CrossRef
go back to reference Ma H, Zhou B et al (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389CrossRef Ma H, Zhou B et al (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84(1):383–389CrossRef
go back to reference Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef
go back to reference Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766 Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766
go back to reference Moon RJ, Martini A et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
go back to reference Pandey JK, Ahn SH et al (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989CrossRef Pandey JK, Ahn SH et al (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989CrossRef
go back to reference Plackett D, Anturi H et al (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117(6):3601–3609 Plackett D, Anturi H et al (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117(6):3601–3609
go back to reference Samir M, Alloin F et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316CrossRef Samir M, Alloin F et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316CrossRef
go back to reference Samir M, Alloin F et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef Samir M, Alloin F et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef
go back to reference Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786 Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786
go back to reference Sehaqui H, Zhou Q et al (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599CrossRef Sehaqui H, Zhou Q et al (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599CrossRef
go back to reference Sehaqui H, Zhou Q et al (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644CrossRef Sehaqui H, Zhou Q et al (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644CrossRef
go back to reference Siqueira G, Bras J et al (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef Siqueira G, Bras J et al (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Soulestin J, Quievy N et al (2007) Polyolefins-biofibre composites: a new way for an industrial production. Polym Eng Sci 47(4):467–476CrossRef Soulestin J, Quievy N et al (2007) Polyolefins-biofibre composites: a new way for an industrial production. Polym Eng Sci 47(4):467–476CrossRef
go back to reference Spence KL, Venditti RA et al (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRef Spence KL, Venditti RA et al (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRef
go back to reference Spence KL, Venditti RA et al (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRef Spence KL, Venditti RA et al (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRef
go back to reference Thomas S, Pothan LA (2009) Natural fibre reinforced polymer composites: from macro to nanoscale, Paris : Éd. des Archives Contemporaines. Old City Publishing, Philadelphia, p 113 Thomas S, Pothan LA (2009) Natural fibre reinforced polymer composites: from macro to nanoscale, Paris : Éd. des Archives Contemporaines. Old City Publishing, Philadelphia, p 113
go back to reference Tingaut P, Zimmermann T et al (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22(38):20105–20111CrossRef Tingaut P, Zimmermann T et al (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22(38):20105–20111CrossRef
go back to reference Trovatti E, Oliveira L et al (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRef Trovatti E, Oliveira L et al (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRef
go back to reference Wang B, Sain M (2007a) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2(3):371–388 Wang B, Sain M (2007a) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2(3):371–388
go back to reference Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527CrossRef Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527CrossRef
go back to reference Xu XZ, Liu F et al (2013) Cellulose Nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009CrossRef Xu XZ, Liu F et al (2013) Cellulose Nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009CrossRef
go back to reference Yoshioka M, Sakaguchi K et al (2009) Fabrication of pulverized cellulosics by ultra high-pressure water jet treatment and usage in polymer nanocomposites and graft copolymerization. J Wood Sci 55(5):335–343CrossRef Yoshioka M, Sakaguchi K et al (2009) Fabrication of pulverized cellulosics by ultra high-pressure water jet treatment and usage in polymer nanocomposites and graft copolymerization. J Wood Sci 55(5):335–343CrossRef
go back to reference Zimmermann T, Pohler E et al (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef Zimmermann T, Pohler E et al (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef
Metadata
Title
Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts
Authors
Nasim Farahbakhsh
Richard A. Venditti
Jesse S. Jur
Publication date
01-08-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0285-4

Other articles of this Issue 4/2014

Cellulose 4/2014 Go to the issue