Skip to main content
Top
Published in: Journal of Materials Science 6/2014

01-03-2014

Mechanical characterization of hollow ceramic nanolattices

Authors: Lucas R. Meza, Julia R. Greer

Published in: Journal of Materials Science | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the analysis of complex, hierarchical structural meta-materials, it is critical to understand the mechanical behavior at each level of hierarchy in order to understand the bulk material response. We report the fabrication and mechanical deformation of hierarchical hollow tube lattice structures with features ranging from 10 nm to 100 μm, hereby referred to as nanolattices. Titanium nitride (TiN) nanolattices were fabricated using a combination of two-photon lithography, direct laser writing, and atomic layer deposition. The structure was composed of a series of tessellated regular octahedra attached at their vertices. In situ uniaxial compression experiments performed in combination with finite element analysis on individual unit cells revealed that the TiN was able to withstand tensile stresses of 1.75 GPa under monotonic loading and of up to 1.7 GPa under cyclic loading without failure. During the compression of the unit cell, the beams bifurcated via lateral-torsional buckling, which gave rise to a hyperelastic behavior in the load–displacement data. During the compression of the full nanolattice, the structure collapsed catastrophically at a high strength and modulus that agreed well with classical cellular solid scaling laws given the low relative density of 1.36 %. We discuss the compressive behavior and mechanical analysis of the unit cell of these hollow TiN nanolattices in the context of finite element analysis in combination with classical buckling laws, and the behavior of the full structure in the context of classical scaling laws of cellular solids coupled with enhanced nanoscale material properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hutchens SB, Needleman A, Greer JR (2012) A microstructurally motivated description of the deformation of vertically aligned carbon nanotube structures. Appl Phys Lett 100:121910CrossRef Hutchens SB, Needleman A, Greer JR (2012) A microstructurally motivated description of the deformation of vertically aligned carbon nanotube structures. Appl Phys Lett 100:121910CrossRef
2.
go back to reference Pathak S, Lim EJ, Abadi PPSS, Graham S, Cola BA, Greer JR (2012) Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in situ study. ACS Nano 6:2189–2197CrossRef Pathak S, Lim EJ, Abadi PPSS, Graham S, Cola BA, Greer JR (2012) Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in situ study. ACS Nano 6:2189–2197CrossRef
3.
go back to reference Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310CrossRef Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310CrossRef
4.
go back to reference Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Carter WB (2011) Ultralight metallic microlattices. Science 334:962–965CrossRef Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Carter WB (2011) Ultralight metallic microlattices. Science 334:962–965CrossRef
5.
go back to reference Torrents A, Schaedler TA, Jacobsen AJ, Carter WB, Valdevit L (2012) Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater 60:3511–3523CrossRef Torrents A, Schaedler TA, Jacobsen AJ, Carter WB, Valdevit L (2012) Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater 60:3511–3523CrossRef
6.
go back to reference Sandhage KH, Dickerson MB, Huseman PM, Caranna MA, Clifton JD, Bull TA, Heibel TJ, Overton WR, Schoenwaelder ME (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv Mater 14:429–433CrossRef Sandhage KH, Dickerson MB, Huseman PM, Caranna MA, Clifton JD, Bull TA, Heibel TJ, Overton WR, Schoenwaelder ME (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv Mater 14:429–433CrossRef
7.
go back to reference Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge
8.
go back to reference Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A 466:2495–2516CrossRef Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A 466:2495–2516CrossRef
9.
go back to reference Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struct 22:409–428CrossRef Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struct 22:409–428CrossRef
10.
go back to reference Hutchinson RG, Fleck NA (2006) The structural performance of the periodic truss. J Mech Phys Solids 54:756–782CrossRef Hutchinson RG, Fleck NA (2006) The structural performance of the periodic truss. J Mech Phys Solids 54:756–782CrossRef
11.
go back to reference Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRef Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRef
12.
go back to reference Tekog˜lu C, Gibson LJ, Pardoen T, Onck PR (2011) Size effects in foams: experiments and modeling. Prog Mater Sci 56:109–138CrossRef Tekog˜lu C, Gibson LJ, Pardoen T, Onck PR (2011) Size effects in foams: experiments and modeling. Prog Mater Sci 56:109–138CrossRef
13.
go back to reference Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRef Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRef
14.
go back to reference Luz GM, Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans R Soc A 367:1587–1605CrossRef Luz GM, Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans R Soc A 367:1587–1605CrossRef
15.
go back to reference Wang C, Huang Y, Zan Q, Guo H, Cai S (2000) Biomimetic structure design: a possible approach to change the brittleness of ceramics in nature. Mater Sci Eng C 11:9–12CrossRef Wang C, Huang Y, Zan Q, Guo H, Cai S (2000) Biomimetic structure design: a possible approach to change the brittleness of ceramics in nature. Mater Sci Eng C 11:9–12CrossRef
16.
go back to reference Tetrault N, Freymann G, Deubel M, Hermatschweiler M, Perez-Willard F, John S, Wegener M, Ozin GA (2006) New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates. Adv Mater 18:457–460CrossRef Tetrault N, Freymann G, Deubel M, Hermatschweiler M, Perez-Willard F, John S, Wegener M, Ozin GA (2006) New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates. Adv Mater 18:457–460CrossRef
17.
go back to reference Jang D, Meza L, Greer F, Greer JR (2013) Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat Mater 12:893–898CrossRef Jang D, Meza L, Greer F, Greer JR (2013) Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat Mater 12:893–898CrossRef
18.
go back to reference Kim JY, Greer JR (2009) Tensile and compressive behavior of gold and molybdenum single crystals at the nanoscale. Acta Mater 57:5245–5253CrossRef Kim JY, Greer JR (2009) Tensile and compressive behavior of gold and molybdenum single crystals at the nanoscale. Acta Mater 57:5245–5253CrossRef
19.
go back to reference Timoshenko SP (1934) Theory of elasticity, 1st edn. McGraw-Hill Book Company, New York Timoshenko SP (1934) Theory of elasticity, 1st edn. McGraw-Hill Book Company, New York
20.
go back to reference Timoshenko SP, Gere JM (1961) Theory of elastic stability, 2nd edn. McGraw-Hill Book Company, New York Timoshenko SP, Gere JM (1961) Theory of elastic stability, 2nd edn. McGraw-Hill Book Company, New York
21.
go back to reference Akimov YK (2003) Field of application of aerogels (review). Instrum Exp Tech 46:287–299CrossRef Akimov YK (2003) Field of application of aerogels (review). Instrum Exp Tech 46:287–299CrossRef
22.
go back to reference Jones RM (2006) Buckling of bars plates and shells, 1st edn. Bull Ridge Publishing, Blacksburg Jones RM (2006) Buckling of bars plates and shells, 1st edn. Bull Ridge Publishing, Blacksburg
23.
go back to reference Kumar S, Wolfe DE, Haque MA (2011) Dislocation shielding and flaw tolerance in titanium nitride. Int J Plast 27:729–747CrossRef Kumar S, Wolfe DE, Haque MA (2011) Dislocation shielding and flaw tolerance in titanium nitride. Int J Plast 27:729–747CrossRef
24.
go back to reference Shackelford JF, Alexander W (2000) Materials science and engineering handbook, 3rd edn. CRC Press Inc., Boca Raton Shackelford JF, Alexander W (2000) Materials science and engineering handbook, 3rd edn. CRC Press Inc., Boca Raton
25.
go back to reference Gu XW, Wu Z, Zhang YW, Srolovitz DJ, Greer JR (2013) Flaw-driven failure in nanostructures. Nanoletters 13:5703–5709CrossRef Gu XW, Wu Z, Zhang YW, Srolovitz DJ, Greer JR (2013) Flaw-driven failure in nanostructures. Nanoletters 13:5703–5709CrossRef
26.
go back to reference Gao H, Ji B, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100:5597–5600CrossRef Gao H, Ji B, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100:5597–5600CrossRef
27.
go back to reference Meyers MA, Chawla KK (1998) Mechanical behavior of materials, 1st edn. Prentice-Hall Inc., Upper Saddle River Meyers MA, Chawla KK (1998) Mechanical behavior of materials, 1st edn. Prentice-Hall Inc., Upper Saddle River
28.
go back to reference Andrievski R (1997) Physical-mechanical properties of nanostructured titanium nitride. Nanostruct Mater 9:607–610CrossRef Andrievski R (1997) Physical-mechanical properties of nanostructured titanium nitride. Nanostruct Mater 9:607–610CrossRef
29.
go back to reference Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct Mater 11:361–367CrossRef Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct Mater 11:361–367CrossRef
30.
go back to reference George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRef George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRef
31.
go back to reference Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45:4019–4025CrossRef Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45:4019–4025CrossRef
32.
go back to reference Law K, Gardner L (2012) Lateral instability of elliptical hollow section beams. Eng Struct 37:152–166CrossRef Law K, Gardner L (2012) Lateral instability of elliptical hollow section beams. Eng Struct 37:152–166CrossRef
33.
go back to reference Li C, Ru CQ, Mioduchowski A (2006) Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. Biochem Biophys Res Commun 351:159–164CrossRef Li C, Ru CQ, Mioduchowski A (2006) Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. Biochem Biophys Res Commun 351:159–164CrossRef
34.
go back to reference McCann RC and Suryanarayana PVR (1994) Experimental study of curvature and frictional effects on buckling. In: Offshore technology conference McCann RC and Suryanarayana PVR (1994) Experimental study of curvature and frictional effects on buckling. In: Offshore technology conference
35.
go back to reference Suryanarayana PVR, McCann RC (1995) An experimental study of buckling and post-buckling of laterally constrained rods. J Energy Res Technol 117:115–124CrossRef Suryanarayana PVR, McCann RC (1995) An experimental study of buckling and post-buckling of laterally constrained rods. J Energy Res Technol 117:115–124CrossRef
Metadata
Title
Mechanical characterization of hollow ceramic nanolattices
Authors
Lucas R. Meza
Julia R. Greer
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7945-x

Other articles of this Issue 6/2014

Journal of Materials Science 6/2014 Go to the issue

Premium Partners