Skip to main content
Top
Published in: Journal of Scientific Computing 2/2019

22-08-2018

Mesh Smoothing for the Spectral Element Method

Authors: Ketan Mittal, Paul Fischer

Published in: Journal of Scientific Computing | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laplacian- and optimization-based mesh-improvement methods are developed for high-order finite- and spectral-element based on 2D quadrilateral and 3D hexahedral meshes in general domains. A robust high-order interpolation library is used during the mesh smoothing process to improve the quality of the surface mesh while retaining the integrity of the original surface approximation. Boundary layer resolution in the original mesh is preserved through various controls in the smoothing process, including weighted interpolation between the optimized and original mesh. All mesh motion and gradient evaluations are performed on an element-by-element basis to ensure that all elements in a large mesh can be smoothed in parallel with minimum communication between different processors. Mesh quality improvements are shown to reduce the condition number of the preconditioned linear systems governing the numerical solution of the discretized partial differential equations, with corresponding reductions in iteration counts. The mesh smoother is tested on various meshes and is found to significantly improve the computational efficiency of calculations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The actual vertex count can vary from \((N-1)^3\) to \((N+1)^3\) per element, depending on boundary conditions and domain connectivity. Throughout the text, we will use the simpler expression of \(N^3\) unless otherwise noted.
 
Literature
1.
go back to reference Branets, L., Carey, G.F.: Extension of a mesh quality metric for elements with a curved boundary edge or surface. J. Comput. Inf. Sci. Eng. 5(4), 302–308 (2005)CrossRef Branets, L., Carey, G.F.: Extension of a mesh quality metric for elements with a curved boundary edge or surface. J. Comput. Inf. Sci. Eng. 5(4), 302–308 (2005)CrossRef
2.
go back to reference Canann, S.A., Stephenson, M.B., Blacker, T.: Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem. Anal. Design 13(2–3), 185–190 (1993)MathSciNetMATHCrossRef Canann, S.A., Stephenson, M.B., Blacker, T.: Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem. Anal. Design 13(2–3), 185–190 (1993)MathSciNetMATHCrossRef
3.
go back to reference Canann, S.A., Tristano, J.R., Staten, M.L., Drive, T.: An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: IMR, pp. 479–494. Citeseer (1998) Canann, S.A., Tristano, J.R., Staten, M.L., Drive, T.: An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: IMR, pp. 479–494. Citeseer (1998)
4.
go back to reference Canuto, C., Gervasio, P., Quarteroni, A.: Finite-element preconditioning of G-NI spectral methods. SIAM J. Sci. Comput. 31(6), 4422–4451 (2010)MathSciNetMATHCrossRef Canuto, C., Gervasio, P., Quarteroni, A.: Finite-element preconditioning of G-NI spectral methods. SIAM J. Sci. Comput. 31(6), 4422–4451 (2010)MathSciNetMATHCrossRef
5.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)MATH Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)MATH
6.
go back to reference Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)MATHCrossRef Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)MATHCrossRef
7.
go back to reference Dey, S., Obara, R.M., Shephard, M.S.: Curvilinear mesh generation in 3D. In: IMR, pp. 407–417 (1999) Dey, S., Obara, R.M., Shephard, M.S.: Curvilinear mesh generation in 3D. In: IMR, pp. 407–417 (1999)
8.
go back to reference Dey, S., Shephard, M.S., Flaherty, J.E.: Geometry representation issues associated with p-version finite element computations. Comput. Methods Appl. Mech. Eng. 150(1–4), 39–55 (1997)MathSciNetMATHCrossRef Dey, S., Shephard, M.S., Flaherty, J.E.: Geometry representation issues associated with p-version finite element computations. Comput. Methods Appl. Mech. Eng. 150(1–4), 39–55 (1997)MathSciNetMATHCrossRef
9.
go back to reference Dobrev, V.A., Kolev, T.V., Rieben, R.N.: High-order curvilinear finite element methods for lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), B606–B641 (2012)MathSciNetMATHCrossRef Dobrev, V.A., Kolev, T.V., Rieben, R.N.: High-order curvilinear finite element methods for lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), B606–B641 (2012)MathSciNetMATHCrossRef
11.
go back to reference Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, pp. 213–244. Springer, New York (2017)CrossRefMATH Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, pp. 213–244. Springer, New York (2017)CrossRefMATH
12.
go back to reference Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetMATHCrossRef Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetMATHCrossRef
13.
go back to reference Fischer, P.F.: Scaling limits for PDE-based simulation. In: 22nd AIAA Computational Fluid Dynamics Conference, p. 3049 (2015) Fischer, P.F.: Scaling limits for PDE-based simulation. In: 22nd AIAA Computational Fluid Dynamics Conference, p. 3049 (2015)
14.
go back to reference Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-multigrid methods for the spectral element method: extensions to Navier-Stokes. In: Barth, T.J., et al. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 35–49. Springer, Berlin (2005)CrossRefMATH Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-multigrid methods for the spectral element method: extensions to Navier-Stokes. In: Barth, T.J., et al. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 35–49. Springer, Berlin (2005)CrossRefMATH
15.
go back to reference Fischer, P.F., Tufo, H.M., Miller, N.I., Tufo, H.M.: An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In: Bjørstad, P., Luskin, M. (eds.) Parallel Solution of Partial Differential Equations, pp. 159–180. Springer, Berlin (2000)CrossRefMATH Fischer, P.F., Tufo, H.M., Miller, N.I., Tufo, H.M.: An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In: Bjørstad, P., Luskin, M. (eds.) Parallel Solution of Partial Differential Equations, pp. 159–180. Springer, Berlin (2000)CrossRefMATH
16.
17.
go back to reference Freitag, L.A.: On combining Laplacian and optimization-based mesh smoothing techniques. ASME Appl. Mech. Divi. Publ. AMD 220, 37–44 (1997) Freitag, L.A.: On combining Laplacian and optimization-based mesh smoothing techniques. ASME Appl. Mech. Divi. Publ. AMD 220, 37–44 (1997)
18.
go back to reference Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Methods Eng. 53(6), 1377–1391 (2002)MathSciNetMATHCrossRef Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Methods Eng. 53(6), 1377–1391 (2002)MathSciNetMATHCrossRef
19.
go back to reference Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Methods Eng. 49(1), 109–125 (2000)MATHCrossRef Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Methods Eng. 49(1), 109–125 (2000)MATHCrossRef
20.
go back to reference Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for validation and generation of high-order tetrahedral meshes. In: Proceedings of the 22nd International Meshing Roundtable, pp. 109–126. Springer (2014) Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for validation and generation of high-order tetrahedral meshes. In: Proceedings of the 22nd International Meshing Roundtable, pp. 109–126. Springer (2014)
21.
go back to reference Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetMATHCrossRef Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetMATHCrossRef
22.
go back to reference Gorman, G.J., Southern, J., Farrell, P.E., Piggott, M., Rokos, G., Kelly, P.H.: Hybrid OpenMP/MPI anisotropic mesh smoothing. Procedia Comput. Sci. 9, 1513–1522 (2012)CrossRef Gorman, G.J., Southern, J., Farrell, P.E., Piggott, M., Rokos, G., Kelly, P.H.: Hybrid OpenMP/MPI anisotropic mesh smoothing. Procedia Comput. Sci. 9, 1513–1522 (2012)CrossRef
23.
go back to reference Heath, M.T.: Scientific Computing. McGraw-Hill, New York (2002) Heath, M.T.: Scientific Computing. McGraw-Hill, New York (2002)
24.
go back to reference Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)MATHCrossRef Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)MATHCrossRef
25.
go back to reference Jansen, K.E., Shephard, M.S., Beall, M.W.: On anisotropic mesh generation and quality control in complex flow problems. In: IMR (2001) Jansen, K.E., Shephard, M.S., Beall, M.W.: On anisotropic mesh generation and quality control in complex flow problems. In: IMR (2001)
26.
go back to reference Knupp, P.: Introducing the target-matrix paradigm for mesh optimization via node-movement. Eng. Comput. 28(4), 419–429 (2012)CrossRef Knupp, P.: Introducing the target-matrix paradigm for mesh optimization via node-movement. Eng. Comput. 28(4), 419–429 (2012)CrossRef
27.
go back to reference Knupp, P.M.: Hexahedral mesh untangling & algebraic mesh quality metrics. In: IMR, pp. 173–183. Citeseer (2000) Knupp, P.M.: Hexahedral mesh untangling & algebraic mesh quality metrics. In: IMR, pp. 173–183. Citeseer (2000)
30.
go back to reference Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24(1), 45–78 (2005)MathSciNetMATHCrossRef Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24(1), 45–78 (2005)MathSciNetMATHCrossRef
31.
go back to reference Luo, X., Shephard, M.S., Remacle, J.F.: The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC Report, vol. 1 (2001) Luo, X., Shephard, M.S., Remacle, J.F.: The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC Report, vol. 1 (2001)
32.
go back to reference Luo, X.J., Shephard, M.S., Obara, R.M., Nastasia, R., Beall, M.W.: Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)CrossRef Luo, X.J., Shephard, M.S., Obara, R.M., Nastasia, R., Beall, M.W.: Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)CrossRef
33.
go back to reference Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964)MathSciNetMATHCrossRef Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964)MathSciNetMATHCrossRef
34.
go back to reference Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: IN: State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64). New York, American Society of Mechanical Engineers, 1989, p. 71–143. Research Supported by DARPA., vol. 1, pp. 71–143 (1989) Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: IN: State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64). New York, American Society of Mechanical Engineers, 1989, p. 71–143. Research Supported by DARPA., vol. 1, pp. 71–143 (1989)
35.
go back to reference Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetMATHCrossRef Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetMATHCrossRef
37.
go back to reference Noguchi, S., Takada, A., Nobuyama, F., Miwa, M., Igarashi, H.: A new mesh smoothing method to improve the condition number of submatrices of coefficient matrix in edge finite element method. IEEE Trans. Magn. 49(5), 1705–1708 (2013)CrossRef Noguchi, S., Takada, A., Nobuyama, F., Miwa, M., Igarashi, H.: A new mesh smoothing method to improve the condition number of submatrices of coefficient matrix in edge finite element method. IEEE Trans. Magn. 49(5), 1705–1708 (2013)CrossRef
39.
go back to reference Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)MATHCrossRef Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)MATHCrossRef
41.
go back to reference Salem, A., Saigal, S., Canann, S.A.: Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng. Comput. 17(1), 39–54 (2001)MATHCrossRef Salem, A., Saigal, S., Canann, S.A.: Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng. Comput. 17(1), 39–54 (2001)MATHCrossRef
42.
go back to reference Sherwin, S., Peiró, J.: Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Methods Eng. 53(1), 207–223 (2002)MATHCrossRef Sherwin, S., Peiró, J.: Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Methods Eng. 53(1), 207–223 (2002)MATHCrossRef
43.
go back to reference Sherwin, S.J., Warburton, T.C., Karniadakis, G.E.: Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)MathSciNetMATHCrossRef Sherwin, S.J., Warburton, T.C., Karniadakis, G.E.: Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)MathSciNetMATHCrossRef
44.
go back to reference Shewchuk, J.: What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). Univ. Calif. Berkeley 73, 12 (2002) Shewchuk, J.: What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). Univ. Calif. Berkeley 73, 12 (2002)
45.
go back to reference Taubin, G.: Linear anisotropic mesh filtering. Research and Report RC2213 IBM , vol. 1(4) (2001) Taubin, G.: Linear anisotropic mesh filtering. Research and Report RC2213 IBM , vol. 1(4) (2001)
46.
go back to reference Tufo, H.M., Fischer, P.F.: Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61(2), 151–177 (2001)MATHCrossRef Tufo, H.M., Fischer, P.F.: Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61(2), 151–177 (2001)MATHCrossRef
47.
go back to reference Warburton, T., Lomtev, I., Du, Y., Sherwin, S., Karniadakis, G.: Galerkin and discontinuous galerkin spectral/hp methods. Comput. Methods Appl. Mech. Eng. 175(3–4), 343–359 (1999)MathSciNetMATHCrossRef Warburton, T., Lomtev, I., Du, Y., Sherwin, S., Karniadakis, G.: Galerkin and discontinuous galerkin spectral/hp methods. Comput. Methods Appl. Mech. Eng. 175(3–4), 343–359 (1999)MathSciNetMATHCrossRef
Metadata
Title
Mesh Smoothing for the Spectral Element Method
Authors
Ketan Mittal
Paul Fischer
Publication date
22-08-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0812-9

Other articles of this Issue 2/2019

Journal of Scientific Computing 2/2019 Go to the issue

Premium Partner