Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2017

02-03-2017

Mesoporous silica particles-embedded high performance separator for lithium-ion batteries

Authors: Yajun Lv, Bo Gu

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To improve the safety of lithium-ion batteries, poly(phenylene oxide)/mesoporous silica composite separator is facilely prepared by non-solvent induced phase separation wet-process and investigated in lithium-ion batteries (LIBs). Systematical investigations including morphology, porosity, electrolyte contact angle testing, electrolyte uptake/retention, and thermal shrinkage testing are carried out. The results demonstrate that the composite separator possesses notable features, such as uniform and porous surface morphology, symmetric interconnected porous structure all through the separator thickness. And owing to the relatively thermal-resistance constituents and well-developed microstructure, this separator shows superior thermal stability under 180 °C with little area shrinkage, higher electrolyte uptake/retention and ionic conductivity than the common polyethylene (PE) separator. Based on the above advantages, a cell with the as-prepared composite separator exhibits higher discharge capacity and better cycle property than that with a porous polyethylene separator. These results suggest that poly(phenylene oxide)/mesoporous silica composite separator is an effective separator for high performance LiBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Li, Z.X. Wang, L.Q. Chen et al., Research on advanced materials for li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)CrossRef H. Li, Z.X. Wang, L.Q. Chen et al., Research on advanced materials for li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)CrossRef
2.
go back to reference Y.S. Jung, A.S. Cavanagh, L. Gedvilas et al., Improved functionality of lithium-Ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2, 1022–1027 (2012)CrossRef Y.S. Jung, A.S. Cavanagh, L. Gedvilas et al., Improved functionality of lithium-Ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2, 1022–1027 (2012)CrossRef
3.
go back to reference H. Lee, M. Yanilmaz, O. Toprakci et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014)CrossRef H. Lee, M. Yanilmaz, O. Toprakci et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014)CrossRef
4.
go back to reference B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef
5.
go back to reference J.D. Zhu, Y. Lu, C. Chen et al., Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. J. Alloys Compd. 672, 79–85 (2016)CrossRef J.D. Zhu, Y. Lu, C. Chen et al., Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. J. Alloys Compd. 672, 79–85 (2016)CrossRef
6.
go back to reference P. Zhang, L.X. Chen, C. Shi et al., Development and characterization of silica tube-coated separator for lithium ion batteries. J. Power Sour. 284, 10–15 (2015)CrossRef P. Zhang, L.X. Chen, C. Shi et al., Development and characterization of silica tube-coated separator for lithium ion batteries. J. Power Sour. 284, 10–15 (2015)CrossRef
7.
go back to reference H. Wu, D. Zhuo, D.S. Kong et al., Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2015). DOI:10.1038/ncomms6193.CrossRef H. Wu, D. Zhuo, D.S. Kong et al., Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2015). DOI:10.​1038/​ncomms6193.CrossRef
8.
go back to reference N.S. Choi, Z. Chen, S.A. Freunberger et al., Angew. Chem. Int. Ed. 51, 9994–10024 (2012)CrossRef N.S. Choi, Z. Chen, S.A. Freunberger et al., Angew. Chem. Int. Ed. 51, 9994–10024 (2012)CrossRef
9.
go back to reference P. Arora, Z.M. Zhang, Battery separators. Chem. Rev. 104, 4419–4462 (2004)CrossRef P. Arora, Z.M. Zhang, Battery separators. Chem. Rev. 104, 4419–4462 (2004)CrossRef
10.
go back to reference S.J. Chun, E.S. Choi, E.H. Lee et al., Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 22, 16618–16626 (2012)CrossRef S.J. Chun, E.S. Choi, E.H. Lee et al., Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 22, 16618–16626 (2012)CrossRef
11.
go back to reference Y.E. Miao, G.N. Zhu, H.Q. Hou et al., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sour. 226, 82–86 (2013)CrossRef Y.E. Miao, G.N. Zhu, H.Q. Hou et al., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sour. 226, 82–86 (2013)CrossRef
12.
go back to reference J.H. Park, J.H. Cho, W. Park et al., Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J. Power Sour. 195, 8306–8310 (2010)CrossRef J.H. Park, J.H. Cho, W. Park et al., Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J. Power Sour. 195, 8306–8310 (2010)CrossRef
13.
go back to reference W. Xiao, L.N. Zhao, Y.Q. Gong et al., Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J. Membr. Sci. 487, 221–228 (2015)CrossRef W. Xiao, L.N. Zhao, Y.Q. Gong et al., Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J. Membr. Sci. 487, 221–228 (2015)CrossRef
14.
go back to reference W.K. Shin, D.W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J. Power Sour. 226, 54–60 (2013)CrossRef W.K. Shin, D.W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J. Power Sour. 226, 54–60 (2013)CrossRef
15.
go back to reference H.S. Jeong, D.W. Kim, Y.U. Jeong et al., Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J. Power Sour. 195, 6116–6121 (2010)CrossRef H.S. Jeong, D.W. Kim, Y.U. Jeong et al., Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J. Power Sour. 195, 6116–6121 (2010)CrossRef
16.
go back to reference Y.B. Liao, C.J. Sun, S.J. Hu et al., Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim. Acta 89, 461–468 (2013)CrossRef Y.B. Liao, C.J. Sun, S.J. Hu et al., Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim. Acta 89, 461–468 (2013)CrossRef
17.
go back to reference H. Zhang, M.Y. Zhou, C.E. Lin et al., Progress in polymeric separators for lithium ion batteries. RSC Adv 5, 89848–89860 (2015)CrossRef H. Zhang, M.Y. Zhou, C.E. Lin et al., Progress in polymeric separators for lithium ion batteries. RSC Adv 5, 89848–89860 (2015)CrossRef
18.
go back to reference S.W. Kim, M.H. Ryou, Y.M. Lee et al., Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution. J. Alloys Compd. 675, 341–347 (2016)CrossRef S.W. Kim, M.H. Ryou, Y.M. Lee et al., Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution. J. Alloys Compd. 675, 341–347 (2016)CrossRef
19.
go back to reference H.S. Jeong, S.Y. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoro propylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sour. 196, 6716–6722 (2011)CrossRef H.S. Jeong, S.Y. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoro propylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sour. 196, 6716–6722 (2011)CrossRef
20.
go back to reference D. Takemura, S. Aihara, K. Hamano et al., A powder particle size effect on ceramic powder based separator for lithium rechargeable battery. J. Power Sour. 146, 779–783 (2005)CrossRef D. Takemura, S. Aihara, K. Hamano et al., A powder particle size effect on ceramic powder based separator for lithium rechargeable battery. J. Power Sour. 146, 779–783 (2005)CrossRef
21.
go back to reference H.K. Chae, D.Y. Siberio-Perez, J. Kim, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRef H.K. Chae, D.Y. Siberio-Perez, J. Kim, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRef
22.
go back to reference C.G. Wu, M.I. Lu, H.J. Chuang, PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte. Polymer 46, 5929–5938 (2005)CrossRef C.G. Wu, M.I. Lu, H.J. Chuang, PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte. Polymer 46, 5929–5938 (2005)CrossRef
23.
go back to reference L.Z. Zhuang, B.B. Ma, S.Y. Chen et al., Fast synthesis of mesoporous silica materials via simple organic compounds templated solegel route in the absence of hydrogen bond. Microporous Mesoporous Mater. 213, 22–29 (2015)CrossRef L.Z. Zhuang, B.B. Ma, S.Y. Chen et al., Fast synthesis of mesoporous silica materials via simple organic compounds templated solegel route in the absence of hydrogen bond. Microporous Mesoporous Mater. 213, 22–29 (2015)CrossRef
24.
go back to reference C.C. Yang, Y.C. Chen, Z.Y. Lian et al., Fabrication and characterization of P(VDF-HFP)/SBA-15 composite membranes for Li-ion batteries. J. Solid State Electrochem. 16, 1815–1821 (2012)CrossRef C.C. Yang, Y.C. Chen, Z.Y. Lian et al., Fabrication and characterization of P(VDF-HFP)/SBA-15 composite membranes for Li-ion batteries. J. Solid State Electrochem. 16, 1815–1821 (2012)CrossRef
25.
go back to reference S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sour. 164, 351–364 (2007)CrossRef S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sour. 164, 351–364 (2007)CrossRef
26.
go back to reference X. Liang, Y. Yang, X. Jin et al., The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 493, 1–7 (2015)CrossRef X. Liang, Y. Yang, X. Jin et al., The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 493, 1–7 (2015)CrossRef
27.
go back to reference R.S. Juang, C.T. Hsieh, P.A. Chen et al., Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sour. 286, 526–533 (2015)CrossRef R.S. Juang, C.T. Hsieh, P.A. Chen et al., Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sour. 286, 526–533 (2015)CrossRef
28.
go back to reference H.R. Jung, W.J. Lee, Electrochemical characteristics of electrospun poly(methyl methacrylate)/ polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim. Acta 58, 674–680 (2011)CrossRef H.R. Jung, W.J. Lee, Electrochemical characteristics of electrospun poly(methyl methacrylate)/ polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim. Acta 58, 674–680 (2011)CrossRef
29.
go back to reference Y.H. Liao, C.J. Sun, S.J. Hu et al., Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim. Acta 89, 461–468 (2013)CrossRef Y.H. Liao, C.J. Sun, S.J. Hu et al., Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim. Acta 89, 461–468 (2013)CrossRef
30.
go back to reference L.F. Fang, J.L. Shi, J.H. Jiang et al., Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic–organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Adv. 4, 22501–22508 (2014)CrossRef L.F. Fang, J.L. Shi, J.H. Jiang et al., Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic–organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Adv. 4, 22501–22508 (2014)CrossRef
31.
go back to reference M.N. He, X.J. Zhang, K.Y. Jiang et al., Pure inorganic separator for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 738–742 (2015)CrossRef M.N. He, X.J. Zhang, K.Y. Jiang et al., Pure inorganic separator for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 738–742 (2015)CrossRef
32.
go back to reference C. Shi, P. Zhang, S.H. Huang et al., Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sour. 298, 158–165 (2015)CrossRef C. Shi, P. Zhang, S.H. Huang et al., Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sour. 298, 158–165 (2015)CrossRef
Metadata
Title
Mesoporous silica particles-embedded high performance separator for lithium-ion batteries
Authors
Yajun Lv
Bo Gu
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6340-9

Other articles of this Issue 9/2017

Journal of Materials Science: Materials in Electronics 9/2017 Go to the issue