Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

14-03-2024 | Original Research Article

Metal (Cu, Ag, and Au) Doping-Induced Tunable Optical Properties of Cadmium Hydroxide for Optoelectronic Applications

Authors: Vipin Kumar, Hwajun Jeon, Pushpendra Kumar, Anoop Kumar Mukhopadhyay, Jin Seog Gwag

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We examine the electronic, optical, and dielectric properties of Cu-, Ag-, and Au-doped and undoped cadmium hydroxide [Cd(OH)2)] using first-principles density functional theory. The electronic investigations show the semiconducting characteristics of Cd(OH)2 with a band gap of about 1.83 eV. These properties were investigated along two mutually perpendicular directions of light polarization and as a function of the incident light energy (photon energy). The frequency-dependent dielectric function is obtained from the electronic structure calculations. The optical quantities, such as absorption, transmission, refractive index, etc., are also calculated to investigate the optical behavior. The metal doping (Cu, Ag, and Au) significantly affects the properties of Cd(OH)2 in the infrared and low-energy visible regions of the electromagnetic spectrum. For photon energies greater than 4.0 eV, the effect of these doping elements on the optical and dielectric properties is negligible. These materials exhibit negative dielectric permittivity, which is one of the fundamental features of a photonic crystal. The low-energy absorption spectrum of the doped material shows a shift towards the longer wavelengths compared to the undoped Cd(OH)2. This shift is maximum (minimum) for Cu (Au)-doped Cd(OH)2, whereas Ag-doped Cd(OH)2 has an intermediate shift compared to Cu- and Au-doped Cd(OH)2. This relative shift may be attributed to their atomic radii. These are good candidates for the absorption of UV radiation. The calculated static refractive index of Ag-doped Cd(OH)2 is comparable to SiO2. These electronic and optical investigations reveal that the considered materials are excellent candidates for optoelectronic device applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J. Hernández-Borja, R. Ramírez-Bon, Y.V. Vorobiev, and M.A. Hernández-Landaverde, Chemically deposited ammonia-free cadmium hydroxide thin films. Thin Solid Films 615, 256 (2016).CrossRef J. Hernández-Borja, R. Ramírez-Bon, Y.V. Vorobiev, and M.A. Hernández-Landaverde, Chemically deposited ammonia-free cadmium hydroxide thin films. Thin Solid Films 615, 256 (2016).CrossRef
2.
go back to reference A. Lecerf, A. Riou, Y. Cudennec, Y. Gerault, and C. Chanson, tude physico-chimique et structurale de l’hydroxyde de cadmium μ Cd(OH)2. Mater. Res. Bull. 23, 1479 (1988).CrossRef A. Lecerf, A. Riou, Y. Cudennec, Y. Gerault, and C. Chanson, tude physico-chimique et structurale de l’hydroxyde de cadmium μ Cd(OH)2. Mater. Res. Bull. 23, 1479 (1988).CrossRef
3.
go back to reference Y.C. Chang, C.C. Hsu, J.C. Lin, and S.H. Wu, Template-free, surfactantless route to synthesize cadmium hydroxide nanodisks and nanowires. Mater. Res. Bull. 83, 207 (2016).CrossRef Y.C. Chang, C.C. Hsu, J.C. Lin, and S.H. Wu, Template-free, surfactantless route to synthesize cadmium hydroxide nanodisks and nanowires. Mater. Res. Bull. 83, 207 (2016).CrossRef
4.
go back to reference R.R. Salunkhe, U.M. Patil, T.P. Gujar, and C.D. Lokhande, Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Appl. Surf. Sci. 255, 3923 (2009).CrossRef R.R. Salunkhe, U.M. Patil, T.P. Gujar, and C.D. Lokhande, Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Appl. Surf. Sci. 255, 3923 (2009).CrossRef
5.
go back to reference H. Zhang, X. Ma, Y. Ji, J. Xu, and D. Yang, Synthesis of cadmium hydroxide nanoflake and nanowisker by hydrothermal method. Mater. Lett. 59, 56 (2005).CrossRef H. Zhang, X. Ma, Y. Ji, J. Xu, and D. Yang, Synthesis of cadmium hydroxide nanoflake and nanowisker by hydrothermal method. Mater. Lett. 59, 56 (2005).CrossRef
6.
go back to reference P. Qu, S. Yan, and H. Meng, Controllable growth of cadmium hydroxide nanostructures by hydrothermal method. Solid State Sci. 12, 83 (2010).CrossRef P. Qu, S. Yan, and H. Meng, Controllable growth of cadmium hydroxide nanostructures by hydrothermal method. Solid State Sci. 12, 83 (2010).CrossRef
7.
go back to reference C. Chen, X. Yan, R. Wu, Y. Wu, Q. Zhu, M. Hou, Z. Zhang, H. Fan, J. Ma, Y. Huang, J. Ma, X. Sun, L. Lin, S. Liu, and B. Han, Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO2 reduction with high efficiency. Chem. Sci. 12, 11914 (2021).CrossRefPubMedPubMedCentral C. Chen, X. Yan, R. Wu, Y. Wu, Q. Zhu, M. Hou, Z. Zhang, H. Fan, J. Ma, Y. Huang, J. Ma, X. Sun, L. Lin, S. Liu, and B. Han, Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO2 reduction with high efficiency. Chem. Sci. 12, 11914 (2021).CrossRefPubMedPubMedCentral
8.
go back to reference X. Chen, H. Wang, R. Meng, B. Xia, and Z. Ma, Cadmium Hydroxide: a missing non-noble metal hydroxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Energy Mater. 3, 1305 (2020).CrossRef X. Chen, H. Wang, R. Meng, B. Xia, and Z. Ma, Cadmium Hydroxide: a missing non-noble metal hydroxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Energy Mater. 3, 1305 (2020).CrossRef
9.
go back to reference C. Bhukkal, M. Chauhan, and R. Ahlawat, Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/CdO nanocomposite. Physica B 582, 411973 (2020).CrossRef C. Bhukkal, M. Chauhan, and R. Ahlawat, Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/CdO nanocomposite. Physica B 582, 411973 (2020).CrossRef
10.
go back to reference M. Ristić, S. Popović, and S. Musić, Formation and properties of Cd(OH)2 and CdO particles. Mater. Lett. 58, 2494 (2004).CrossRef M. Ristić, S. Popović, and S. Musić, Formation and properties of Cd(OH)2 and CdO particles. Mater. Lett. 58, 2494 (2004).CrossRef
11.
go back to reference J. Adnan, M. Arfan, T. Shahid, M.Z. Khan, R. Masab, A.H. Ramish, S. Ahtasham, A.G. Wattoo, M. Hashim, A. Zahoor, and M.F. Nasir, Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach. Nanomater. Nanotechnol. 9, 1 (2019).CrossRef J. Adnan, M. Arfan, T. Shahid, M.Z. Khan, R. Masab, A.H. Ramish, S. Ahtasham, A.G. Wattoo, M. Hashim, A. Zahoor, and M.F. Nasir, Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach. Nanomater. Nanotechnol. 9, 1 (2019).CrossRef
12.
go back to reference Ü. Akın, H. Şafak, V. Eskizeybek, A. Avcı, and Ö.F. Yüksel, Optical constants of thin film prepared by the Cd(OH)2 nanowires synthesized using the arc discharge method. J. Nanoelectron. Optoelectron. 9, 99 (2014).CrossRef Ü. Akın, H. Şafak, V. Eskizeybek, A. Avcı, and Ö.F. Yüksel, Optical constants of thin film prepared by the Cd(OH)2 nanowires synthesized using the arc discharge method. J. Nanoelectron. Optoelectron. 9, 99 (2014).CrossRef
13.
go back to reference V. Kumar, R.K. Mishra, P. Kumar, and J.S. Gwag, A comprehensive study on the electronic structure, dielectric and optical properties of alkali-earth metals and transition metal hydroxides M(OH)2. Luminescence 38, 1307 (2022).CrossRefPubMed V. Kumar, R.K. Mishra, P. Kumar, and J.S. Gwag, A comprehensive study on the electronic structure, dielectric and optical properties of alkali-earth metals and transition metal hydroxides M(OH)2. Luminescence 38, 1307 (2022).CrossRefPubMed
14.
go back to reference J.M. Henriques, C.A. Barboza, E.L. Albuquerque, U.L. Fulco, and E. Moreira, Structural, optoelectronic, infrared and Raman spectra from first principles calculations of γ-Cd(OH)2. J. Phys. Chem. Solids 76, 45 (2015).CrossRef J.M. Henriques, C.A. Barboza, E.L. Albuquerque, U.L. Fulco, and E. Moreira, Structural, optoelectronic, infrared and Raman spectra from first principles calculations of γ-Cd(OH)2. J. Phys. Chem. Solids 76, 45 (2015).CrossRef
16.
go back to reference J.C. Medina, V.I. Garcia-Perez, and R. Zanella, Metallic composites based on Ag, Cu, Au and Ag-Cu nanoparticles with distinctive bactericidal effect on varied species. Mater. Today Commun. 26, 102182 (2021).CrossRef J.C. Medina, V.I. Garcia-Perez, and R. Zanella, Metallic composites based on Ag, Cu, Au and Ag-Cu nanoparticles with distinctive bactericidal effect on varied species. Mater. Today Commun. 26, 102182 (2021).CrossRef
17.
go back to reference A. Pishtshev, S.Z. Karazhanov, and M. Klopov, Materials properties of magnesium and calcium hydroxides from first-principles calculations. Comput. Mater. Sci. 95, 693 (2014).CrossRef A. Pishtshev, S.Z. Karazhanov, and M. Klopov, Materials properties of magnesium and calcium hydroxides from first-principles calculations. Comput. Mater. Sci. 95, 693 (2014).CrossRef
19.
go back to reference P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRef P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRef
20.
go back to reference W. Kohn, and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).CrossRef W. Kohn, and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).CrossRef
21.
go back to reference J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefPubMed J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefPubMed
22.
go back to reference J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044 (2008).CrossRefPubMed J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044 (2008).CrossRefPubMed
23.
go back to reference I. Morrison, D.M. Bylander, and L. Kleinman, Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 47, 6728 (1993).CrossRef I. Morrison, D.M. Bylander, and L. Kleinman, Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 47, 6728 (1993).CrossRef
24.
go back to reference T. Ozaki, and H. Kino, Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004).CrossRef T. Ozaki, and H. Kino, Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004).CrossRef
25.
go back to reference S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).CrossRefPubMed S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).CrossRefPubMed
26.
go back to reference L.S.D. Glasser, and R. Roy, Calcium hydroxide. J. Inorg. Nuci. Chem 170, 96 (1961). L.S.D. Glasser, and R. Roy, Calcium hydroxide. J. Inorg. Nuci. Chem 170, 96 (1961).
27.
go back to reference L. Hemmingsen, R. Bauer, M.J. Bjerrum, K. Schwarz, P. Blaha, and P. Andersen, Structure, chemical bonding, and nuclear quadrupole interactions of β-Cd(OH)2: experiment and first principles calculations. Inorg. Chem. 38, 2860 (1999).CrossRefPubMed L. Hemmingsen, R. Bauer, M.J. Bjerrum, K. Schwarz, P. Blaha, and P. Andersen, Structure, chemical bonding, and nuclear quadrupole interactions of β-Cd(OH)2: experiment and first principles calculations. Inorg. Chem. 38, 2860 (1999).CrossRefPubMed
28.
go back to reference C.C. Lee, Y.T. Lee, M. Fukuda, and T. Ozaki, Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic orbitals: anomalous Hall conductivity in bcc Fe. Phys. Rev. B 98, 115115 (2018).CrossRef C.C. Lee, Y.T. Lee, M. Fukuda, and T. Ozaki, Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic orbitals: anomalous Hall conductivity in bcc Fe. Phys. Rev. B 98, 115115 (2018).CrossRef
29.
go back to reference P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B 59, 1776 (1999).CrossRef P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B 59, 1776 (1999).CrossRef
30.
go back to reference L. Desgranges, G. Calvarin, and G. Chevrier, Interlayer interactions in M(OH)2: a neutron diffraction study of Mg(OH)2. Acta Cryst. B52, 82 (1996).CrossRef L. Desgranges, G. Calvarin, and G. Chevrier, Interlayer interactions in M(OH)2: a neutron diffraction study of Mg(OH)2. Acta Cryst. B52, 82 (1996).CrossRef
31.
go back to reference J.P. Perdew, and M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884 (1983).CrossRef J.P. Perdew, and M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884 (1983).CrossRef
32.
go back to reference A.L. Efros, and A.L. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129, 643 (2004).CrossRef A.L. Efros, and A.L. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129, 643 (2004).CrossRef
33.
go back to reference V.G. Veselago, The electrodynamics of substances with simultaneously negative values of є and μ. Sov. Phys. Uspekhi 10, 509 (1968).CrossRef V.G. Veselago, The electrodynamics of substances with simultaneously negative values of є and μ. Sov. Phys. Uspekhi 10, 509 (1968).CrossRef
34.
go back to reference G.A. Ermolaev, D.V. Grudinin, Y.V. Stebunov, K.V. Voronin, V.G. Kravets, J. Duan, A.B. Mazitov, G.I. Tselikov, A. Bylinkin, D.I. Yakubovsky, S.M. Novikov, D.G. Baranov, A.Y. Nikitin, I.A. Kruglov, T. Shegai, P. Alonso-González, A.N. Grigorenko, A.V. Arsenin, K.S. Novoselov, and V.S. Volkov, Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 1 (2021).CrossRef G.A. Ermolaev, D.V. Grudinin, Y.V. Stebunov, K.V. Voronin, V.G. Kravets, J. Duan, A.B. Mazitov, G.I. Tselikov, A. Bylinkin, D.I. Yakubovsky, S.M. Novikov, D.G. Baranov, A.Y. Nikitin, I.A. Kruglov, T. Shegai, P. Alonso-González, A.N. Grigorenko, A.V. Arsenin, K.S. Novoselov, and V.S. Volkov, Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 1 (2021).CrossRef
35.
go back to reference V. Kumar, R.K. Mishra, P. Kumar, L.G. Trung, and J.S. Gwag, Strong anisotropic optical response in two-dimensional Mo-VIA and Mo-VIIA monolayer binary materials. Photonics Nanostruct. Fundam. Appl. 53, 101114 (2023).CrossRef V. Kumar, R.K. Mishra, P. Kumar, L.G. Trung, and J.S. Gwag, Strong anisotropic optical response in two-dimensional Mo-VIA and Mo-VIIA monolayer binary materials. Photonics Nanostruct. Fundam. Appl. 53, 101114 (2023).CrossRef
36.
go back to reference T. Zou, B. Zhao, W. Xin, F. Wang, H. Xie, Y. Li, Y. Shan, K. Li, Y. Sun, and J. Yang, Birefringent response of graphene oxide film structurized via femtosecond laser. Nano Res. 15, 4490 (2022).CrossRef T. Zou, B. Zhao, W. Xin, F. Wang, H. Xie, Y. Li, Y. Shan, K. Li, Y. Sun, and J. Yang, Birefringent response of graphene oxide film structurized via femtosecond laser. Nano Res. 15, 4490 (2022).CrossRef
Metadata
Title
Metal (Cu, Ag, and Au) Doping-Induced Tunable Optical Properties of Cadmium Hydroxide for Optoelectronic Applications
Authors
Vipin Kumar
Hwajun Jeon
Pushpendra Kumar
Anoop Kumar Mukhopadhyay
Jin Seog Gwag
Publication date
14-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10994-1

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue