Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

22-01-2024 | Original Research Article

High-Performance Microwave Absorption Properties of Pyramid-Shaped Metamaterials Based on Ni-Foam@Fe3O4

Authors: Guodong Han, Yudeng Wang, Junxiang Zhou, Yong Sun, Jiafu Wang, Shaobo Qu

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A broadband pyramid-shaped nickel and ferric oxide (Ni-foam@Fe3O4) metamaterial is developed in this work. The optimal metamaterial structure with 1.3 g of Fe3O4 and a pyramid height of 20 mm shows a broad absorption band in the frequency range of 7.84–30 GHz, with absorbance exceeding 90%. The absorbance of transverse electric (TE) waves at incident angles up to 60° remains above 90% in the frequency range of 7.5–30 GHz. In terms of the transverse magnetic (TM) waves, the absorbance at 0°–45° exceeds 90% in the frequency range of 9.5–30 GHz. The mechanism of physical absorption is systematically investigated based on the electric/magnetic (E/H) field distribution and power energy loss. The results suggest the high potential of the as-fabricated metamaterial for practical application in ultra-broadband and polarization-insensitive microwave absorption (MA).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys-Uspekhi 10, 5 (1968).CrossRef V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys-Uspekhi 10, 5 (1968).CrossRef
2.
go back to reference J.B. Pendry, A.J. Holden, W.J. Stewart, and I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 87, 3 (2001). J.B. Pendry, A.J. Holden, W.J. Stewart, and I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 87, 3 (2001).
3.
go back to reference J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3 (2000).CrossRef J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3 (2000).CrossRef
4.
go back to reference J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).CrossRef J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).CrossRef
5.
go back to reference R.A. Shelby, R.D. Smith, and S. Schultz, Experimental verification of a negative index of refraction. Science 292, 2 (2001).CrossRef R.A. Shelby, R.D. Smith, and S. Schultz, Experimental verification of a negative index of refraction. Science 292, 2 (2001).CrossRef
6.
go back to reference H.L. Luo, S.C. Wen, W.X. Shu, Z.X. Tang, Y.H. Zou, and D.Y. Fan, Rotational Doppler effect in left-handed materials. Phys. Rev. A 78, 6 (2008).CrossRef H.L. Luo, S.C. Wen, W.X. Shu, Z.X. Tang, Y.H. Zou, and D.Y. Fan, Rotational Doppler effect in left-handed materials. Phys. Rev. A 78, 6 (2008).CrossRef
7.
go back to reference N. Seddon, and T. Bearpark, Observation of the inverse Doppler effect. Science 302, 3 (2003).CrossRef N. Seddon, and T. Bearpark, Observation of the inverse Doppler effect. Science 302, 3 (2003).CrossRef
8.
go back to reference C.H. Chen, S.B. Qu, J.F. Wang, H. Ma, J. Wang, J.B. Zhao, X.H. Wang, K. Zhou, and Z. Xu, Wide-angle and polarization-independent three-dimensional magnetic metamaterials with and without substrates. J. Phys. D Appl. Phys. 44, 8 (2011). C.H. Chen, S.B. Qu, J.F. Wang, H. Ma, J. Wang, J.B. Zhao, X.H. Wang, K. Zhou, and Z. Xu, Wide-angle and polarization-independent three-dimensional magnetic metamaterials with and without substrates. J. Phys. D Appl. Phys. 44, 8 (2011).
9.
go back to reference B.N. Wang, J.F. Zhou, K. Thoms, and M.S. Costas, Nonplanar chiral metamaterials with negative index. Appl. Phys. Lett. 94, 3 (2009). B.N. Wang, J.F. Zhou, K. Thoms, and M.S. Costas, Nonplanar chiral metamaterials with negative index. Appl. Phys. Lett. 94, 3 (2009).
10.
go back to reference N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006).PubMedCrossRef N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006).PubMedCrossRef
11.
go back to reference A. Habib, F. Brian, L. Hyundae, S.H. Yu, and H. Zhang, Double-Negat Acoustic Metamater. 7, 24 (2017). A. Habib, F. Brian, L. Hyundae, S.H. Yu, and H. Zhang, Double-Negat Acoustic Metamater. 7, 24 (2017).
12.
go back to reference J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008).PubMedCrossRef J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008).PubMedCrossRef
13.
go back to reference N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 3 (2008).CrossRef N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 3 (2008).CrossRef
14.
go back to reference T. Hu, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7 (2008). T. Hu, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7 (2008).
15.
go back to reference N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, and W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79(12), 125104 (2009).CrossRef N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, and W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79(12), 125104 (2009).CrossRef
16.
go back to reference J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 2 (2011). J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 2 (2011).
17.
go back to reference C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A metamaterial absorber with direction-selective and polarisation-insensitive properties. Chin. Phys. B Phys B 20(3), 037801 (2011).CrossRef C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A metamaterial absorber with direction-selective and polarisation-insensitive properties. Chin. Phys. B Phys B 20(3), 037801 (2011).CrossRef
18.
go back to reference C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber. Prog Electromagnet Res Lett. 17, 8 (2010).CrossRef C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber. Prog Electromagnet Res Lett. 17, 8 (2010).CrossRef
19.
go back to reference P.F. Wang, Y.F. Gu, L. Miao, J.H. Zhou, H. Su, A.Y. Wei, X.J. Mu, Y.Z. Tian, J.Q. Shi, and H.F. Cai, Co3O4 Nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustain. Mater. Technol. 20, 7 (2019). P.F. Wang, Y.F. Gu, L. Miao, J.H. Zhou, H. Su, A.Y. Wei, X.J. Mu, Y.Z. Tian, J.Q. Shi, and H.F. Cai, Co3O4 Nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustain. Mater. Technol. 20, 7 (2019).
20.
go back to reference L. Zhan, X.S. Zhou, J. Luo, and X.M. Ning, Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode. Ceram. Int. 45, 17 (2019).CrossRef L. Zhan, X.S. Zhou, J. Luo, and X.M. Ning, Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode. Ceram. Int. 45, 17 (2019).CrossRef
21.
go back to reference X. Ke, Y.H. Liang, L.H. Ou, H.D. Liu, Y.M. Chen, W.L. Wu, Y.F. Cheng, Z.P. Guo, Y.Q. Lai, P. Liu, and Z.C. Shi, Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 9 (2019). X. Ke, Y.H. Liang, L.H. Ou, H.D. Liu, Y.M. Chen, W.L. Wu, Y.F. Cheng, Z.P. Guo, Y.Q. Lai, P. Liu, and Z.C. Shi, Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 9 (2019).
22.
go back to reference J. Smardzewski, T. Kamisinski, D. Dziurka, R. Mirski, A. Majewski, A. Flach, and A. Pilch, Sound absorption of wood-based materials. Appl. Acoust. 48, 10 (1996). J. Smardzewski, T. Kamisinski, D. Dziurka, R. Mirski, A. Majewski, A. Flach, and A. Pilch, Sound absorption of wood-based materials. Appl. Acoust. 48, 10 (1996).
23.
go back to reference M. Aghazadeh, H. Forati-Rad, K. Yavari, and K. Mohammadzadeh, On-pot fabrication of binder-free composite of iron oxide grown onto porous N-Doped graphene layers with outstanding charge storage performance for supercapacitors. J. Mater. Sci. Mater. Electron. 32(10), 13156–13176 (2021).CrossRef M. Aghazadeh, H. Forati-Rad, K. Yavari, and K. Mohammadzadeh, On-pot fabrication of binder-free composite of iron oxide grown onto porous N-Doped graphene layers with outstanding charge storage performance for supercapacitors. J. Mater. Sci. Mater. Electron. 32(10), 13156–13176 (2021).CrossRef
24.
go back to reference M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Func. Mater. 31, 10 (2021).CrossRef M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Func. Mater. 31, 10 (2021).CrossRef
25.
go back to reference H.L. Xu, Y. Shen, H. Bi, W.F. Liang, and R.B. Yang, Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435, 6 (2012).CrossRef H.L. Xu, Y. Shen, H. Bi, W.F. Liang, and R.B. Yang, Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435, 6 (2012).CrossRef
26.
go back to reference J. Pan, H. Guo, M. Wang, H. Yang, H. Hu, P. Liu, and H. Zhu, Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020).CrossRef J. Pan, H. Guo, M. Wang, H. Yang, H. Hu, P. Liu, and H. Zhu, Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020).CrossRef
27.
go back to reference Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang, R.H. Yu, and J.L. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Func. Mater. 29, 9 (2019). Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang, R.H. Yu, and J.L. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Func. Mater. 29, 9 (2019).
28.
go back to reference Y. Cheng, G.B. Ji, Z.Y. Li, H.L. Lv, W. Liu, Y. Zhao, J.M. Cao, and Y.W. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloy. Compd. 704, 7 (2017).CrossRef Y. Cheng, G.B. Ji, Z.Y. Li, H.L. Lv, W. Liu, Y. Zhao, J.M. Cao, and Y.W. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloy. Compd. 704, 7 (2017).CrossRef
29.
go back to reference S.H. Kim, Y.G. Park, and S.S. Kim, Double-layered microwave absorbers composed of ferrite and carbon fiber composite laminates. Phys. Status Solidi 4, 4 (2007). S.H. Kim, Y.G. Park, and S.S. Kim, Double-layered microwave absorbers composed of ferrite and carbon fiber composite laminates. Phys. Status Solidi 4, 4 (2007).
30.
go back to reference H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, and Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater. 7, 16 (2019).CrossRef H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, and Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater. 7, 16 (2019).CrossRef
31.
go back to reference Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, and Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 10 (2016).CrossRef Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, and Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 10 (2016).CrossRef
32.
go back to reference M.H. Xu, W. Zhong, Z.H. Wang, C. Au, and Y.W. Du, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Physica E: Low-Dimen Syst Nanostruct 52, 14–20 (2013).CrossRef M.H. Xu, W. Zhong, Z.H. Wang, C. Au, and Y.W. Du, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Physica E: Low-Dimen Syst Nanostruct 52, 14–20 (2013).CrossRef
33.
go back to reference H. Luo, F. Chen, X. Wang, W. Dai, Y. Xiong, J. Yang, and R. Gong, A Novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 119, 1–7 (2019).CrossRef H. Luo, F. Chen, X. Wang, W. Dai, Y. Xiong, J. Yang, and R. Gong, A Novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 119, 1–7 (2019).CrossRef
34.
go back to reference J. Dong, X. Huang, P. Muley, T. Wu, M. Barekati-Goudarzi, Z. Tang, and Q. Wu, Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Compos. Part B Eng. 184, 107640 (2020).CrossRef J. Dong, X. Huang, P. Muley, T. Wu, M. Barekati-Goudarzi, Z. Tang, and Q. Wu, Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Compos. Part B Eng. 184, 107640 (2020).CrossRef
35.
go back to reference W. Liu, J. Tian, R. Yang, and W. Pei, Design of a type of broadband metamaterial absorber based on metal and graphene. Curr. Appl. Phys. 31, 122–131 (2021).CrossRef W. Liu, J. Tian, R. Yang, and W. Pei, Design of a type of broadband metamaterial absorber based on metal and graphene. Curr. Appl. Phys. 31, 122–131 (2021).CrossRef
36.
go back to reference Q. Wang, F. Zhang, Y.J. Xiong, Y. Wang, X.Z. Tang, C. Jiang, I. Abrahams, and X.Z. Huang, Dual-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface[J]. J. Electron. Mater. 48, 7 (2019). Q. Wang, F. Zhang, Y.J. Xiong, Y. Wang, X.Z. Tang, C. Jiang, I. Abrahams, and X.Z. Huang, Dual-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface[J]. J. Electron. Mater. 48, 7 (2019).
37.
go back to reference X.Q. Chen, Z. Wu, Z.L. Zhang, and Y.H. Zou, Graphene oxide aqueous solution-based metamaterial for broadband absorption. Physica E 120, 5 (2020).CrossRef X.Q. Chen, Z. Wu, Z.L. Zhang, and Y.H. Zou, Graphene oxide aqueous solution-based metamaterial for broadband absorption. Physica E 120, 5 (2020).CrossRef
38.
go back to reference H. Mei, W.Q. Yang, X. Zhao, L. Yao, Y.T. Yao, C. Chen, and L.F. Cheng, In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater. Des. 197, 9 (2021).CrossRef H. Mei, W.Q. Yang, X. Zhao, L. Yao, Y.T. Yao, C. Chen, and L.F. Cheng, In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater. Des. 197, 9 (2021).CrossRef
39.
go back to reference Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, and D. Fang, Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 162, 206–214 (2018).CrossRef Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, and D. Fang, Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 162, 206–214 (2018).CrossRef
40.
go back to reference L. Lei, Z.J. Yao, J.T. Zhou, B. Wei, and H.Y. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 9 (2020).CrossRef L. Lei, Z.J. Yao, J.T. Zhou, B. Wei, and H.Y. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 9 (2020).CrossRef
41.
go back to reference F. Zhang, Q. Wang, T. Zhou, Y. Xiong, Y. Wen, C. Jiang, and X. Huang, A Multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure. J. Alloys Compd. 814, 152300 (2020).CrossRef F. Zhang, Q. Wang, T. Zhou, Y. Xiong, Y. Wen, C. Jiang, and X. Huang, A Multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure. J. Alloys Compd. 814, 152300 (2020).CrossRef
42.
go back to reference F. Zhang, C. Jiang, Q. Wang, Z. Zhao, Y. Wang, Z. Du, and X. Huang, A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Appl Phys Exp 13(8), 084001 (2020).CrossRef F. Zhang, C. Jiang, Q. Wang, Z. Zhao, Y. Wang, Z. Du, and X. Huang, A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Appl Phys Exp 13(8), 084001 (2020).CrossRef
Metadata
Title
High-Performance Microwave Absorption Properties of Pyramid-Shaped Metamaterials Based on Ni-Foam@Fe3O4
Authors
Guodong Han
Yudeng Wang
Junxiang Zhou
Yong Sun
Jiafu Wang
Shaobo Qu
Publication date
22-01-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10896-8

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue