Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

25-01-2024 | Original Research Article

Multifunctional Terahertz Absorber Based on Graphene-VO2 Metamaterial with Linear Dichroism and Tunable Circular Dichroism

Authors: Zhe Chen, Haowen Tang, Zhonghua Chen, Tao Shen, Hui Zhang

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a multifunctional terahertz absorber utilizing graphene and vanadium dioxide as functional materials. By utilizing vanadium dioxide in the metallic state, the device achieves linear dichroism, with a maximum value of 0.8 at 1.75 THz, while in the insulating state, the introduction of graphene strips results in a chiral structure that achieves circular dichroism with tunable values ranging from 0 to 0.59 at 1.535 THz by regulating the graphene’s Fermi level. The physical mechanism underlying the differential absorption is explained, and the influence of the device’s structural parameters and incident angle on the performance is also investigated. This work provides a practical basis for the development of terahertz functional devices in polarization detection and near-field imaging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Z.Q. He and X.J. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 9, 210–214 (2020).CrossRef Z.Q. He and X.J. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 9, 210–214 (2020).CrossRef
3.
go back to reference X. Jiang, H. Chen, Z.Y. Li, H.K. Yuan, L.Y. Cao, Z.F. Luo, K. Zhang, Z.H. Zhang, Z.Q. Wen, L.G. Zhu, X. Zhou, G.F. Liang, D.S. Ruan, L.H. Du, L.F. Wang, and G. Chen, All-dielectric metalens for terahertz wave imaging. Opt. Express 26, 14132–14142 (2018).CrossRefPubMed X. Jiang, H. Chen, Z.Y. Li, H.K. Yuan, L.Y. Cao, Z.F. Luo, K. Zhang, Z.H. Zhang, Z.Q. Wen, L.G. Zhu, X. Zhou, G.F. Liang, D.S. Ruan, L.H. Du, L.F. Wang, and G. Chen, All-dielectric metalens for terahertz wave imaging. Opt. Express 26, 14132–14142 (2018).CrossRefPubMed
4.
go back to reference X.J. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 6 (2013).CrossRef X.J. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 6 (2013).CrossRef
5.
go back to reference S. Taravati and G.V. Eleftheriades, Pure and linear frequency-conversion temporal metasurface. Phys. Rev. Appl. 15, 12 (2021).CrossRef S. Taravati and G.V. Eleftheriades, Pure and linear frequency-conversion temporal metasurface. Phys. Rev. Appl. 15, 12 (2021).CrossRef
6.
go back to reference T. Chung, H. Wang, and H. Cai, Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing. Nanotechnology 34, 402001 (2023).CrossRef T. Chung, H. Wang, and H. Cai, Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing. Nanotechnology 34, 402001 (2023).CrossRef
7.
go back to reference Y. Cui and Y. Jiang, Dual-band tunable and strong circular dichroism in a metal-graphene hybrid zigzag metasurface. Opt. Express 30, 42614–42623 (2022).CrossRefPubMed Y. Cui and Y. Jiang, Dual-band tunable and strong circular dichroism in a metal-graphene hybrid zigzag metasurface. Opt. Express 30, 42614–42623 (2022).CrossRefPubMed
8.
go back to reference Y. Cui, X. Wang, B. Ren, H. Jiang, and Y. Jiang, High-efficiency and tunable circular polarization selectivity in photosensitive silicon-based zigzag array metasurface. Opt. Laser Technol. 156, 108453 (2022).CrossRef Y. Cui, X. Wang, B. Ren, H. Jiang, and Y. Jiang, High-efficiency and tunable circular polarization selectivity in photosensitive silicon-based zigzag array metasurface. Opt. Laser Technol. 156, 108453 (2022).CrossRef
9.
go back to reference N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).CrossRefPubMed N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).CrossRefPubMed
10.
go back to reference Y. Cai, Y. Guo, Y. Zhou, X. Huang, G. Yang, and J. Zhu, Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene. Opt. Express 28, 31524–31534 (2020).CrossRefPubMed Y. Cai, Y. Guo, Y. Zhou, X. Huang, G. Yang, and J. Zhu, Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene. Opt. Express 28, 31524–31534 (2020).CrossRefPubMed
11.
go back to reference Z. Chen, J. Chen, H. Tang, T. Shen, and H. Zhang, Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Opt. Express 30, 6778–6785 (2022).CrossRefPubMed Z. Chen, J. Chen, H. Tang, T. Shen, and H. Zhang, Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Opt. Express 30, 6778–6785 (2022).CrossRefPubMed
12.
go back to reference Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles. Opt. Express 27, 22190–22197 (2019).CrossRefPubMed Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles. Opt. Express 27, 22190–22197 (2019).CrossRefPubMed
13.
go back to reference X. Huang, F. Yang, B. Gao, Q. Yang, J. Wu, and W. He, Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt. Express 27, 25902–25911 (2019).CrossRefPubMed X. Huang, F. Yang, B. Gao, Q. Yang, J. Wu, and W. He, Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt. Express 27, 25902–25911 (2019).CrossRefPubMed
14.
go back to reference K.-D. Xu, J. Li, A. Zhang, and Q. Chen, Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 28, 11482–11492 (2020).CrossRefPubMed K.-D. Xu, J. Li, A. Zhang, and Q. Chen, Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 28, 11482–11492 (2020).CrossRefPubMed
15.
go back to reference F.Y. Li, T.T. Tang, Y.H. Mao, L. Luo, J. Li, J.X. Xiao, K.L. Liu, J. Shen, C.Y. Li, and J.Q. Yao, Metal-graphene hybrid chiral metamaterials for tunable circular dichroism. Ann. Phys. 532, 2000065 (2020).CrossRef F.Y. Li, T.T. Tang, Y.H. Mao, L. Luo, J. Li, J.X. Xiao, K.L. Liu, J. Shen, C.Y. Li, and J.Q. Yao, Metal-graphene hybrid chiral metamaterials for tunable circular dichroism. Ann. Phys. 532, 2000065 (2020).CrossRef
16.
go back to reference B.X. Wang, G.Z. Wang, X. Zhai, and L.L. Wang, Polarization tunable terahertz metamaterial absorber. IEEE Photonics J. 7, 1–7 (2015).CrossRef B.X. Wang, G.Z. Wang, X. Zhai, and L.L. Wang, Polarization tunable terahertz metamaterial absorber. IEEE Photonics J. 7, 1–7 (2015).CrossRef
17.
go back to reference Z. Wang, F. Cheng, T. Winsor, and Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).CrossRefPubMed Z. Wang, F. Cheng, T. Winsor, and Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).CrossRefPubMed
18.
go back to reference J. Xu, J. Tang, M. Chen, C. Teng, S. Deng, Y. Cheng, S. Qu, and L. Yuan, Actively tunable linear and circular dichroic metamirrors based on single-layer graphene. Opt. Express 31, 381–395 (2023).CrossRefPubMed J. Xu, J. Tang, M. Chen, C. Teng, S. Deng, Y. Cheng, S. Qu, and L. Yuan, Actively tunable linear and circular dichroic metamirrors based on single-layer graphene. Opt. Express 31, 381–395 (2023).CrossRefPubMed
19.
go back to reference L. Chen and Z. Song, Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 28, 6565–6571 (2020).CrossRefPubMed L. Chen and Z. Song, Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 28, 6565–6571 (2020).CrossRefPubMed
20.
go back to reference X.L. Wu, Y. Zheng, Y. Luo, J.G. Zhang, Z. Yi, X.W. Wu, S.B. Cheng, W.X. Yang, Y. Yu, and P.H. Wu, A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 23, 26864–26873 (2021).CrossRefPubMed X.L. Wu, Y. Zheng, Y. Luo, J.G. Zhang, Z. Yi, X.W. Wu, S.B. Cheng, W.X. Yang, Y. Yu, and P.H. Wu, A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 23, 26864–26873 (2021).CrossRefPubMed
21.
go back to reference Y.Q. Tong, S.Y. Wang, X.X. Song, L. Yang, J.Q. Yao, Y.X. Ye, Y.P. Ren, Y.T. Zhang, S.S. Xin, and X.D. Ren, Multi-band tunable terahertz absorber based on metamaterial. Int. J. Infrared Millim. Waves 39, 735–741 (2020). Y.Q. Tong, S.Y. Wang, X.X. Song, L. Yang, J.Q. Yao, Y.X. Ye, Y.P. Ren, Y.T. Zhang, S.S. Xin, and X.D. Ren, Multi-band tunable terahertz absorber based on metamaterial. Int. J. Infrared Millim. Waves 39, 735–741 (2020).
22.
go back to reference T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.G. Chae, S.J. Yun, H.T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, and D.N. Basov, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008).CrossRef T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.G. Chae, S.J. Yun, H.T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, and D.N. Basov, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008).CrossRef
23.
go back to reference L. Kang, H.G. Bao, S.D. Campbell, P.L. Werner, D.H. Werner, S.X. Wang, C.F. Cai, M.H. You, F.Y. Liu, M.H. Wu, S.Z. Li, Tunable broadband terahertz metamaterial absorbers based on VO2, in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020), pp. 729–730. L. Kang, H.G. Bao, S.D. Campbell, P.L. Werner, D.H. Werner, S.X. Wang, C.F. Cai, M.H. You, F.Y. Liu, M.H. Wu, S.Z. Li, Tunable broadband terahertz metamaterial absorbers based on VO2, in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020), pp. 729–730.
24.
go back to reference G. Xie, Z. Shi, R. Yang, D. Liu, W. Yang, M. Cheng, D. Wang, D. Shi, and G. Zhang, Graphene edge lithography. Nano Lett. 12(9), 4642–4646 (2012).CrossRefPubMed G. Xie, Z. Shi, R. Yang, D. Liu, W. Yang, M. Cheng, D. Wang, D. Shi, and G. Zhang, Graphene edge lithography. Nano Lett. 12(9), 4642–4646 (2012).CrossRefPubMed
25.
go back to reference M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).CrossRef M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).CrossRef
26.
go back to reference T.T. Lv, Y.X. Li, H.F. Ma, Z. Zhu, Z.P. Li, C.Y. Guan, J.H. Shi, H. Zhang, and T.J. Cui, Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6, 23186 (2016).CrossRefPubMedPubMedCentral T.T. Lv, Y.X. Li, H.F. Ma, Z. Zhu, Z.P. Li, C.Y. Guan, J.H. Shi, H. Zhang, and T.J. Cui, Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6, 23186 (2016).CrossRefPubMedPubMedCentral
27.
go back to reference Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A.A. Bernussi, Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B 29, 2373–2378 (2012).CrossRef Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A.A. Bernussi, Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B 29, 2373–2378 (2012).CrossRef
28.
go back to reference G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, and P. Wu, Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 25, 17322–17328 (2017).CrossRefPubMed G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, and P. Wu, Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 25, 17322–17328 (2017).CrossRefPubMed
29.
go back to reference H. Wang, H.Q. Zhou, T.H. Li, Z. Qin, C.C. Li, X. Li, Y.F. Li, J.Q. Zhang, S.B. Qu, and L.L. Huang, Tailoring circular dichroism via the Born-Kuhn model for meta-holograms. Sci. China Phys. Mech. Astron. 65, 104212 (2022).CrossRef H. Wang, H.Q. Zhou, T.H. Li, Z. Qin, C.C. Li, X. Li, Y.F. Li, J.Q. Zhang, S.B. Qu, and L.L. Huang, Tailoring circular dichroism via the Born-Kuhn model for meta-holograms. Sci. China Phys. Mech. Astron. 65, 104212 (2022).CrossRef
30.
go back to reference J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020).CrossRef J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020).CrossRef
31.
go back to reference S. Asgari and T. Fabritius, Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model. IEEE Access 10, 63658–63671 (2022).CrossRef S. Asgari and T. Fabritius, Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model. IEEE Access 10, 63658–63671 (2022).CrossRef
32.
go back to reference W.-G. Qin, W.-P. Zhang, L. Li, Y.-J. Huang, and Z.-W. Xie, Numerical simulation research of circular dichroism based on a catenary-shaped ultrathin metasurface. J. Opt. Soc. Am. B 39, 1543–1548 (2022).CrossRef W.-G. Qin, W.-P. Zhang, L. Li, Y.-J. Huang, and Z.-W. Xie, Numerical simulation research of circular dichroism based on a catenary-shaped ultrathin metasurface. J. Opt. Soc. Am. B 39, 1543–1548 (2022).CrossRef
33.
go back to reference J. Li, C. Zheng, J. Li, H. Zhao, X. Hao, H. Xu, Z. Yue, Y. Zhang, and J. Yao, Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces. Opt. Express 29, 3284–3295 (2021).CrossRefPubMed J. Li, C. Zheng, J. Li, H. Zhao, X. Hao, H. Xu, Z. Yue, Y. Zhang, and J. Yao, Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces. Opt. Express 29, 3284–3295 (2021).CrossRefPubMed
Metadata
Title
Multifunctional Terahertz Absorber Based on Graphene-VO2 Metamaterial with Linear Dichroism and Tunable Circular Dichroism
Authors
Zhe Chen
Haowen Tang
Zhonghua Chen
Tao Shen
Hui Zhang
Publication date
25-01-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10914-3

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue