Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

17-03-2024 | Original Research Article

A Dual-Band Terahertz Metamaterial Absorber Using an All-Metal Aluminum Hexagonal Metasurface Structure for Sensing of Cancerous Cells

Author: Ahmet Teber

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article proposes a dual-band terahertz metamaterial absorber (TMA) where all components of the designed structure are made of aluminum (optical) material. Unlike the metal-dielectric-metal structures typically found in the literature, the proposed structure has a lightweight material that does not contain a sandwich structure. Thus, the structure greatly simplifies the production process and reduces the cost. The results of electromagnetic and equivalent circuit simulations are compared based on the S11 parameters (in dB), resulting in good agreement of findings by CST and ADS, respectively. The proposed TMA operates in dual frequency bands at 1.902 THz (f1) and 1.976 THz (f2), with strong absorption of 98.17% and 99.05%, respectively. The quality factors (Q-factors) corresponding to these resonant frequencies are 240.15, (f1) and 181.61, (f2). When the refractive index (RI) of the medium surrounding the TMA varies, the absorption peaks shift accordingly. The detection properties of the proposed TMA are examined as the RI of the surrounding medium is varied primarily between 1.34 and 1.39 with an increase of 0.01 for biomedical applications. The corresponding sensitivities of two resonance peaks are 0.794 THz/RIU and 0.971 THz/RIU, respectively. Since many samples, such as human blood, basal/breast/cervical cells, and cancerous cells, are found in this RI range, the proposed TMA sensor can be used as a viable biosensor in the identification of biological samples for real-world applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Technol. 7, 2101171 (2022).CrossRef C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Technol. 7, 2101171 (2022).CrossRef
2.
go back to reference R. Lai, H. Chen, Z. Zhou, Z. Yi, B. Tang, J. Chen, Y. Yi, C. Tang, J. Zhang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef R. Lai, H. Chen, Z. Zhou, Z. Yi, B. Tang, J. Chen, Y. Yi, C. Tang, J. Zhang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef
3.
go back to reference B.X. Wang, G. Duan, C. Xu, J. Jiang, W. Xu, and F. Pi, Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator. Mater. Des. 225, 111586 (2023).CrossRef B.X. Wang, G. Duan, C. Xu, J. Jiang, W. Xu, and F. Pi, Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator. Mater. Des. 225, 111586 (2023).CrossRef
4.
go back to reference H.W. Lan, Z.M. Li, X.L. Weng, L. Qi, K. Li, Z.R. Zhou, X.Y. Wu, and M. Bi, Low-Frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 62, 1096 (2023).PubMedCrossRef H.W. Lan, Z.M. Li, X.L. Weng, L. Qi, K. Li, Z.R. Zhou, X.Y. Wu, and M. Bi, Low-Frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 62, 1096 (2023).PubMedCrossRef
5.
go back to reference J.F. Ruan, Z.F. Meng, R.Z. Zou, S.M. Pan, and S.W. Ji, Ultra-wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microw. Opt. Technol. Lett. 65, 20 (2023).CrossRef J.F. Ruan, Z.F. Meng, R.Z. Zou, S.M. Pan, and S.W. Ji, Ultra-wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microw. Opt. Technol. Lett. 65, 20 (2023).CrossRef
6.
go back to reference S. Chen, J.D. Bi, G. Ding, S. Wang, and X.Y. Luo, Design of polarization-insensitive polarization converter based on frequency selective surface. Opt. Commun. 530, 129127 (2023).CrossRef S. Chen, J.D. Bi, G. Ding, S. Wang, and X.Y. Luo, Design of polarization-insensitive polarization converter based on frequency selective surface. Opt. Commun. 530, 129127 (2023).CrossRef
7.
go back to reference B.X. Wang, G.Z. Wang, and L.L. Wang, Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523 (2016).CrossRef B.X. Wang, G.Z. Wang, and L.L. Wang, Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523 (2016).CrossRef
8.
go back to reference Z. Faraz, B. Kamal, S. Ullah, A. Aziz, and H. Kanwal, High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Opt. Commun. 530, 129101 (2023).CrossRef Z. Faraz, B. Kamal, S. Ullah, A. Aziz, and H. Kanwal, High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Opt. Commun. 530, 129101 (2023).CrossRef
9.
go back to reference Y. Wang, R. Yang, Y. Zhao, and J. Tian, Wide-angle chiral polarization converter for reflection and transmission modes. Opt. Commun. 530, 129196 (2023).CrossRef Y. Wang, R. Yang, Y. Zhao, and J. Tian, Wide-angle chiral polarization converter for reflection and transmission modes. Opt. Commun. 530, 129196 (2023).CrossRef
10.
go back to reference Y. Cheng, Y. Qian, H. Luo, F. Chen, and Z. Cheng, Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped gaas array for enhanced refractive index sensing. Phys. E Low-Dimens. Syst. Nanostruct. 146, 115527 (2023).CrossRef Y. Cheng, Y. Qian, H. Luo, F. Chen, and Z. Cheng, Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped gaas array for enhanced refractive index sensing. Phys. E Low-Dimens. Syst. Nanostruct. 146, 115527 (2023).CrossRef
11.
go back to reference J. Bai, P. Shen, S. Wang, W. Xu, W. Shen, and S. Chang, A high-Q terahertz metamaterials absorber for refractive index sensing. Phys. Status Solidi Basic Res. 260, 2200444 (2023).CrossRef J. Bai, P. Shen, S. Wang, W. Xu, W. Shen, and S. Chang, A high-Q terahertz metamaterials absorber for refractive index sensing. Phys. Status Solidi Basic Res. 260, 2200444 (2023).CrossRef
12.
go back to reference Y.I. Abdulkarim, O. Altintas, A.S. Karim, H.N. Awl, F.F. Muhammadsharif, F.Ö. Alkurt, M. Bakir, B. Appasani, M. Karaaslan, and J. Dong, Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094 (2022).PubMedPubMedCentralCrossRef Y.I. Abdulkarim, O. Altintas, A.S. Karim, H.N. Awl, F.F. Muhammadsharif, F.Ö. Alkurt, M. Bakir, B. Appasani, M. Karaaslan, and J. Dong, Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094 (2022).PubMedPubMedCentralCrossRef
13.
go back to reference S. Banerjee, P. Dutta, A.V. Jha, B. Appasani, and M.S. Khan, A biomedical sensor for detection of cancer cells based on terahertz metamaterial absorber. IEEE Sensors Lett. 6, 6002004 (2022).CrossRef S. Banerjee, P. Dutta, A.V. Jha, B. Appasani, and M.S. Khan, A biomedical sensor for detection of cancer cells based on terahertz metamaterial absorber. IEEE Sensors Lett. 6, 6002004 (2022).CrossRef
14.
go back to reference D. Cheng, X. He, X. Huang, B. Zhang, G. Liu, G. Shu, C. Fang, J. Wang, and Y. Luo, Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. Int. J. RF Microw. Comput. Eng. 28, e21448 (2018).CrossRef D. Cheng, X. He, X. Huang, B. Zhang, G. Liu, G. Shu, C. Fang, J. Wang, and Y. Luo, Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. Int. J. RF Microw. Comput. Eng. 28, e21448 (2018).CrossRef
15.
go back to reference S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson, X. Wei, and Y. Sun, Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10, 2101008 (2022).CrossRef S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson, X. Wei, and Y. Sun, Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10, 2101008 (2022).CrossRef
16.
go back to reference R. Lai, H. Chen, Z. Zhou, Z. Yi, J. Chen, Y. Yi, C. Tang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef R. Lai, H. Chen, Z. Zhou, Z. Yi, J. Chen, Y. Yi, C. Tang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef
17.
go back to reference D. Wang, K.D. Xu, S. Luo, Y. Cui, L. Zhang, and J. Cui, A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 15, 3398 (2023).PubMedCrossRef D. Wang, K.D. Xu, S. Luo, Y. Cui, L. Zhang, and J. Cui, A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 15, 3398 (2023).PubMedCrossRef
18.
go back to reference J. Liu, L. Fan, J. Su, S. Yang, H. Luo, X. Shen, and F. Ding, Study on a terahertz biosensor based on graphene-metamaterial, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 280, 121527 (2022).CrossRef J. Liu, L. Fan, J. Su, S. Yang, H. Luo, X. Shen, and F. Ding, Study on a terahertz biosensor based on graphene-metamaterial, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 280, 121527 (2022).CrossRef
19.
go back to reference H. Zhou, C. Yang, D. Hu, D. Li, X. Hui, F. Zhang, M. Chen, and X. Mu, Terahertz biosensing based on Bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 115, 143507 (2019).CrossRef H. Zhou, C. Yang, D. Hu, D. Li, X. Hui, F. Zhang, M. Chen, and X. Mu, Terahertz biosensing based on Bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 115, 143507 (2019).CrossRef
21.
go back to reference X. Huang, W. Ye, J. Ran, Z. Zou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef X. Huang, W. Ye, J. Ran, Z. Zou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef
22.
go back to reference H. Zou and Y. Cheng, Design of a Six-Band Terahertz Metamaterial Absorber for Temperature Sensing Application, Opt. Mater. (Amst). 88, 674 (2019). H. Zou and Y. Cheng, Design of a Six-Band Terahertz Metamaterial Absorber for Temperature Sensing Application, Opt. Mater. (Amst). 88, 674 (2019).
23.
go back to reference M. Aslinezhad, High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 463, 125411 (2020).CrossRef M. Aslinezhad, High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 463, 125411 (2020).CrossRef
24.
go back to reference J. Yu, T. Lang, and H. Chen, All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics 8, 164 (2021).CrossRef J. Yu, T. Lang, and H. Chen, All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics 8, 164 (2021).CrossRef
25.
go back to reference G. Palermo, K.V. Sreekanth, N. Maccaferri, G.E. Lio, G. Nicoletta, F. De Angelis, M. Hinczewski, and G. Strangi, Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics. 10, 295 (2020).CrossRef G. Palermo, K.V. Sreekanth, N. Maccaferri, G.E. Lio, G. Nicoletta, F. De Angelis, M. Hinczewski, and G. Strangi, Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics. 10, 295 (2020).CrossRef
26.
go back to reference R. Hokari, Y. Kanamori, and K. Hane, Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths. Opt. Express 22, 3526 (2014).PubMedCrossRef R. Hokari, Y. Kanamori, and K. Hane, Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths. Opt. Express 22, 3526 (2014).PubMedCrossRef
27.
go back to reference W. Wang, W. Wang, F. Yan, Z. Wang, H. Li, S. Tan, and X. Du, Numerical research on supercavity sensing driven by guided resonance in a terahertz all-metal metamaterial absorber. Opt. Laser Technol. 169, 110113 (2024).CrossRef W. Wang, W. Wang, F. Yan, Z. Wang, H. Li, S. Tan, and X. Du, Numerical research on supercavity sensing driven by guided resonance in a terahertz all-metal metamaterial absorber. Opt. Laser Technol. 169, 110113 (2024).CrossRef
28.
go back to reference W. Wenhao, L. Besteiro, P. Yu, F. Lin, A. Govorov, H. Xu, and Z. Wang, Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics 10, 1911 (2021).CrossRef W. Wenhao, L. Besteiro, P. Yu, F. Lin, A. Govorov, H. Xu, and Z. Wang, Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics 10, 1911 (2021).CrossRef
29.
go back to reference D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42, 450 (2017).PubMedCrossRef D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42, 450 (2017).PubMedCrossRef
30.
go back to reference D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 036617 (2005).CrossRef D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 036617 (2005).CrossRef
31.
go back to reference J. Li, Y. Liu, Z. Wang, Dual-resonant terahertz metamaterial with High Q-factors, in IEEE International Conference on Communiction Problem-Solving (2014), p 291 J. Li, Y. Liu, Z. Wang, Dual-resonant terahertz metamaterial with High Q-factors, in IEEE International Conference on Communiction Problem-Solving (2014), p 291
32.
go back to reference B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015).CrossRef B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015).CrossRef
33.
go back to reference Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R.S. Cumming, A Terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945 (2011).PubMedCrossRef Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R.S. Cumming, A Terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945 (2011).PubMedCrossRef
34.
go back to reference R.M.H. Bilal, M.A. Saeed, M.A. Naveed, M. Zubair, M.Q. Mehmood, and Y. Massoud, Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials 12, 3356 (2022).PubMedPubMedCentralCrossRef R.M.H. Bilal, M.A. Saeed, M.A. Naveed, M. Zubair, M.Q. Mehmood, and Y. Massoud, Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials 12, 3356 (2022).PubMedPubMedCentralCrossRef
35.
go back to reference S. Kalraiya, R.K. Chaudhary, and R.K. Gangwar, Polarization independent triple band ultrathin conformal metamaterial absorber for C- and X-frequency bands. AEU - Int. J. Electron. Commun. 135, 153752 (2021).CrossRef S. Kalraiya, R.K. Chaudhary, and R.K. Gangwar, Polarization independent triple band ultrathin conformal metamaterial absorber for C- and X-frequency bands. AEU - Int. J. Electron. Commun. 135, 153752 (2021).CrossRef
36.
go back to reference C.A. Balanis, Advanced engineering electromagnetics, 2nd ed., (NJ: John Wiley & Sons, 2012). C.A. Balanis, Advanced engineering electromagnetics, 2nd ed., (NJ: John Wiley & Sons, 2012).
37.
go back to reference H.-K. Yuan, U.K. Chettiar, W. Cai, A.V. Kildishev, A. Boltasseva, V.P. Drachev, and V.M. Shalaev, A negative permeability material at red light. Opt. Express 15, 1076 (2007).PubMedCrossRef H.-K. Yuan, U.K. Chettiar, W. Cai, A.V. Kildishev, A. Boltasseva, V.P. Drachev, and V.M. Shalaev, A negative permeability material at red light. Opt. Express 15, 1076 (2007).PubMedCrossRef
38.
go back to reference R. Asgharian, B. Zakeri, and O. Karimi, Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU - Int. J. Electron. Commun. 87, 119 (2018).CrossRef R. Asgharian, B. Zakeri, and O. Karimi, Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU - Int. J. Electron. Commun. 87, 119 (2018).CrossRef
39.
go back to reference M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin, and M.T. Islam, A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239 (2020).CrossRef M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin, and M.T. Islam, A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239 (2020).CrossRef
40.
go back to reference H. Li, Design and simulation of a metabsorber based on equivalent circuit method, in IEEE International Conference on Computational Electromagnetics (ICCEM) (2018), p 1 H. Li, Design and simulation of a metabsorber based on equivalent circuit method, in IEEE International Conference on Computational Electromagnetics (ICCEM) (2018), p 1
41.
go back to reference M. Zhao, J. Xu, and J. Zhao, Design and analysis of dual-band FSS based on equivalent circuit. Int. J. RF Microw. Comput. Eng. 32, e23405 (2022). M. Zhao, J. Xu, and J. Zhao, Design and analysis of dual-band FSS based on equivalent circuit. Int. J. RF Microw. Comput. Eng. 32, e23405 (2022).
43.
go back to reference A.K. Singh, M.P. Abegaonkar, and S.K. Koul, Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Trans. Electromagn. Compat. 61, 878 (2019).CrossRef A.K. Singh, M.P. Abegaonkar, and S.K. Koul, Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Trans. Electromagn. Compat. 61, 878 (2019).CrossRef
44.
go back to reference M.L. Hakim, T. Alam, M.T. Islam, H. Alsaif, and M.S. Soliman, Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (Mm-Wave) band applications. Measurement 210, 112545 (2023).CrossRef M.L. Hakim, T. Alam, M.T. Islam, H. Alsaif, and M.S. Soliman, Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (Mm-Wave) band applications. Measurement 210, 112545 (2023).CrossRef
45.
go back to reference A. Darvishzadeh, N. Alharbi, A. Mosavi, and N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate. Phys. B Condens. Matter 543, 14 (2018).CrossRef A. Darvishzadeh, N. Alharbi, A. Mosavi, and N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate. Phys. B Condens. Matter 543, 14 (2018).CrossRef
46.
go back to reference I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).CrossRef I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).CrossRef
47.
go back to reference Z. Gajinov, M. Matić, S. Prćić, and V. Đuran, Optical Properties of the Human Skin / Optičke Osobine Ljudske Kože. Serbian J. Dermatol. Venerol. 2, 131 (2010).CrossRef Z. Gajinov, M. Matić, S. Prćić, and V. Đuran, Optical Properties of the Human Skin / Optičke Osobine Ljudske Kože. Serbian J. Dermatol. Venerol. 2, 131 (2010).CrossRef
48.
go back to reference S. Banerjee, U. Nath, P. Dutta, A.V. Jha, B. Appasani, and N. Bizon, A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 6, 78 (2021).CrossRef S. Banerjee, U. Nath, P. Dutta, A.V. Jha, B. Appasani, and N. Bizon, A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 6, 78 (2021).CrossRef
49.
go back to reference P. Sharan, SM. Bharadwaj, F. Dackson Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), p 20 P. Sharan, SM. Bharadwaj, F. Dackson Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), p 20
50.
go back to reference XJ. Liang, AQ. Liu, XM. Zhang, PH. Yap, TC. Ayi, HS. Yoon, Determination of refractive index for single living cell using integrated biochip, in the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, (2005), p 1712 XJ. Liang, AQ. Liu, XM. Zhang, PH. Yap, TC. Ayi, HS. Yoon, Determination of refractive index for single living cell using integrated biochip, in the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, (2005), p 1712
51.
go back to reference A.N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, and V. Neel, High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644 (2012).PubMedCrossRef A.N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, and V. Neel, High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644 (2012).PubMedCrossRef
52.
go back to reference M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, and M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11, 1 (2019).CrossRef M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, and M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11, 1 (2019).CrossRef
53.
go back to reference P. Sharma, P. Sharan, P. Deshmukh, A Photonic Crystal Sensor for Analysis and Detection of Cancer Cells, in International Conference on Pervasive Computing (ICPC) (2015), p 1 P. Sharma, P. Sharan, P. Deshmukh, A Photonic Crystal Sensor for Analysis and Detection of Cancer Cells, in International Conference on Pervasive Computing (ICPC) (2015), p 1
54.
go back to reference P. Kumar, V.K. Rohan, and J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik (Stuttg) 144, 363 (2017).CrossRef P. Kumar, V.K. Rohan, and J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik (Stuttg) 144, 363 (2017).CrossRef
55.
go back to reference K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, and M.S. Uddin, Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the terahertz range. IET Optoelectron. 15, 1 (2021).CrossRef K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, and M.S. Uddin, Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the terahertz range. IET Optoelectron. 15, 1 (2021).CrossRef
56.
go back to reference J.-T. Lin, D.-C. Cheng, M. Jiang, Y.-S. Chiang, and H.-W. Liu, Analysis of scaling law and figure of merit of fiber-based biosensor. J. Nanomater. 2012, 154736 (2012).CrossRef J.-T. Lin, D.-C. Cheng, M. Jiang, Y.-S. Chiang, and H.-W. Liu, Analysis of scaling law and figure of merit of fiber-based biosensor. J. Nanomater. 2012, 154736 (2012).CrossRef
57.
go back to reference Y. Wang, Y. Yi, D. Xu, Z. Yi, Z. Li, X. Chen, H. Jile, J. Zhang, L. Zeng, and G. Li, Terahertz tunable three band narrowband perfect absorber based on dirac semimetal. Phys. E Low-Dimens. Syst. Nanostruct. 131, 114750 (2021).CrossRef Y. Wang, Y. Yi, D. Xu, Z. Yi, Z. Li, X. Chen, H. Jile, J. Zhang, L. Zeng, and G. Li, Terahertz tunable three band narrowband perfect absorber based on dirac semimetal. Phys. E Low-Dimens. Syst. Nanostruct. 131, 114750 (2021).CrossRef
58.
go back to reference A.S. Saadeldin, M.F.O. Hameed, E.M.A. Elkaramany, and S.S.A. Obayya, Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993 (2019).CrossRef A.S. Saadeldin, M.F.O. Hameed, E.M.A. Elkaramany, and S.S.A. Obayya, Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993 (2019).CrossRef
59.
go back to reference B.-X. Wang, Y. He, P. Lou, and W. Xing, Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763 (2020).PubMedPubMedCentralCrossRef B.-X. Wang, Y. He, P. Lou, and W. Xing, Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763 (2020).PubMedPubMedCentralCrossRef
60.
go back to reference M.-R. Nickpay, M. Danaie, and A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 17, 237 (2022).CrossRef M.-R. Nickpay, M. Danaie, and A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 17, 237 (2022).CrossRef
61.
go back to reference M. Karthikeyan, P. Jayabala, S. Ramachandran, S. Dhanabalan, T. Sivanesan, and M. Ponnusamy, Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials 12, 2693 (2022).PubMedPubMedCentralCrossRef M. Karthikeyan, P. Jayabala, S. Ramachandran, S. Dhanabalan, T. Sivanesan, and M. Ponnusamy, Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials 12, 2693 (2022).PubMedPubMedCentralCrossRef
62.
go back to reference F. Ghaedi Vanani, A. Fardoost, and R. Safian, Design of double ring label-free terahertz sensor. IEEE Sens. J. 19, 1293 (2019).CrossRef F. Ghaedi Vanani, A. Fardoost, and R. Safian, Design of double ring label-free terahertz sensor. IEEE Sens. J. 19, 1293 (2019).CrossRef
63.
go back to reference X. Yan, L.-J. Liang, X. Ding, and J.-Q. Yao, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Opt. Eng. 56, 027104 (2017).CrossRef X. Yan, L.-J. Liang, X. Ding, and J.-Q. Yao, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Opt. Eng. 56, 027104 (2017).CrossRef
64.
go back to reference M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R.D. Averitt, and X. Zhang, A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 111, 051101 (2017).CrossRef M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R.D. Averitt, and X. Zhang, A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 111, 051101 (2017).CrossRef
65.
go back to reference X. Huang, W. Ye, J. Ran, Z. Zhou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef X. Huang, W. Ye, J. Ran, Z. Zhou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef
66.
67.
go back to reference E. Mohajerani, F. Farajollahi, R. Mahzoon, and S. Baghery, Morphological and thickness analysis for PMMA spin coated films. J. Optoelectron. Adv. Mater. 9, 3901 (2007). E. Mohajerani, F. Farajollahi, R. Mahzoon, and S. Baghery, Morphological and thickness analysis for PMMA spin coated films. J. Optoelectron. Adv. Mater. 9, 3901 (2007).
68.
go back to reference M. Mayer, M. Tebbe, C. Kuttner, M.J. Schnepf, T.A. König, and A. Fery, Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss. 191, 159 (2016).PubMedPubMedCentralCrossRef M. Mayer, M. Tebbe, C. Kuttner, M.J. Schnepf, T.A. König, and A. Fery, Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss. 191, 159 (2016).PubMedPubMedCentralCrossRef
69.
go back to reference C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Tech. 7, 2101171 (2022).CrossRef C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Tech. 7, 2101171 (2022).CrossRef
Metadata
Title
A Dual-Band Terahertz Metamaterial Absorber Using an All-Metal Aluminum Hexagonal Metasurface Structure for Sensing of Cancerous Cells
Author
Ahmet Teber
Publication date
17-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10999-w

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue