Skip to main content
Erschienen in: Journal of Electronic Materials 5/2024

17.03.2024 | Original Research Article

A Dual-Band Terahertz Metamaterial Absorber Using an All-Metal Aluminum Hexagonal Metasurface Structure for Sensing of Cancerous Cells

verfasst von: Ahmet Teber

Erschienen in: Journal of Electronic Materials | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a dual-band terahertz metamaterial absorber (TMA) where all components of the designed structure are made of aluminum (optical) material. Unlike the metal-dielectric-metal structures typically found in the literature, the proposed structure has a lightweight material that does not contain a sandwich structure. Thus, the structure greatly simplifies the production process and reduces the cost. The results of electromagnetic and equivalent circuit simulations are compared based on the S11 parameters (in dB), resulting in good agreement of findings by CST and ADS, respectively. The proposed TMA operates in dual frequency bands at 1.902 THz (f1) and 1.976 THz (f2), with strong absorption of 98.17% and 99.05%, respectively. The quality factors (Q-factors) corresponding to these resonant frequencies are 240.15, (f1) and 181.61, (f2). When the refractive index (RI) of the medium surrounding the TMA varies, the absorption peaks shift accordingly. The detection properties of the proposed TMA are examined as the RI of the surrounding medium is varied primarily between 1.34 and 1.39 with an increase of 0.01 for biomedical applications. The corresponding sensitivities of two resonance peaks are 0.794 THz/RIU and 0.971 THz/RIU, respectively. Since many samples, such as human blood, basal/breast/cervical cells, and cancerous cells, are found in this RI range, the proposed TMA sensor can be used as a viable biosensor in the identification of biological samples for real-world applications.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Technol. 7, 2101171 (2022).CrossRef C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Technol. 7, 2101171 (2022).CrossRef
2.
Zurück zum Zitat R. Lai, H. Chen, Z. Zhou, Z. Yi, B. Tang, J. Chen, Y. Yi, C. Tang, J. Zhang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef R. Lai, H. Chen, Z. Zhou, Z. Yi, B. Tang, J. Chen, Y. Yi, C. Tang, J. Zhang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat B.X. Wang, G. Duan, C. Xu, J. Jiang, W. Xu, and F. Pi, Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator. Mater. Des. 225, 111586 (2023).CrossRef B.X. Wang, G. Duan, C. Xu, J. Jiang, W. Xu, and F. Pi, Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator. Mater. Des. 225, 111586 (2023).CrossRef
4.
Zurück zum Zitat H.W. Lan, Z.M. Li, X.L. Weng, L. Qi, K. Li, Z.R. Zhou, X.Y. Wu, and M. Bi, Low-Frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 62, 1096 (2023).PubMedCrossRef H.W. Lan, Z.M. Li, X.L. Weng, L. Qi, K. Li, Z.R. Zhou, X.Y. Wu, and M. Bi, Low-Frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 62, 1096 (2023).PubMedCrossRef
5.
Zurück zum Zitat J.F. Ruan, Z.F. Meng, R.Z. Zou, S.M. Pan, and S.W. Ji, Ultra-wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microw. Opt. Technol. Lett. 65, 20 (2023).CrossRef J.F. Ruan, Z.F. Meng, R.Z. Zou, S.M. Pan, and S.W. Ji, Ultra-wideband metamaterial absorber based on frequency selective resistive film for 5G spectrum. Microw. Opt. Technol. Lett. 65, 20 (2023).CrossRef
6.
Zurück zum Zitat S. Chen, J.D. Bi, G. Ding, S. Wang, and X.Y. Luo, Design of polarization-insensitive polarization converter based on frequency selective surface. Opt. Commun. 530, 129127 (2023).CrossRef S. Chen, J.D. Bi, G. Ding, S. Wang, and X.Y. Luo, Design of polarization-insensitive polarization converter based on frequency selective surface. Opt. Commun. 530, 129127 (2023).CrossRef
7.
Zurück zum Zitat B.X. Wang, G.Z. Wang, and L.L. Wang, Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523 (2016).CrossRef B.X. Wang, G.Z. Wang, and L.L. Wang, Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523 (2016).CrossRef
8.
Zurück zum Zitat Z. Faraz, B. Kamal, S. Ullah, A. Aziz, and H. Kanwal, High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Opt. Commun. 530, 129101 (2023).CrossRef Z. Faraz, B. Kamal, S. Ullah, A. Aziz, and H. Kanwal, High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Opt. Commun. 530, 129101 (2023).CrossRef
9.
Zurück zum Zitat Y. Wang, R. Yang, Y. Zhao, and J. Tian, Wide-angle chiral polarization converter for reflection and transmission modes. Opt. Commun. 530, 129196 (2023).CrossRef Y. Wang, R. Yang, Y. Zhao, and J. Tian, Wide-angle chiral polarization converter for reflection and transmission modes. Opt. Commun. 530, 129196 (2023).CrossRef
10.
Zurück zum Zitat Y. Cheng, Y. Qian, H. Luo, F. Chen, and Z. Cheng, Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped gaas array for enhanced refractive index sensing. Phys. E Low-Dimens. Syst. Nanostruct. 146, 115527 (2023).CrossRef Y. Cheng, Y. Qian, H. Luo, F. Chen, and Z. Cheng, Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped gaas array for enhanced refractive index sensing. Phys. E Low-Dimens. Syst. Nanostruct. 146, 115527 (2023).CrossRef
11.
Zurück zum Zitat J. Bai, P. Shen, S. Wang, W. Xu, W. Shen, and S. Chang, A high-Q terahertz metamaterials absorber for refractive index sensing. Phys. Status Solidi Basic Res. 260, 2200444 (2023).CrossRef J. Bai, P. Shen, S. Wang, W. Xu, W. Shen, and S. Chang, A high-Q terahertz metamaterials absorber for refractive index sensing. Phys. Status Solidi Basic Res. 260, 2200444 (2023).CrossRef
12.
Zurück zum Zitat Y.I. Abdulkarim, O. Altintas, A.S. Karim, H.N. Awl, F.F. Muhammadsharif, F.Ö. Alkurt, M. Bakir, B. Appasani, M. Karaaslan, and J. Dong, Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094 (2022).PubMedPubMedCentralCrossRef Y.I. Abdulkarim, O. Altintas, A.S. Karim, H.N. Awl, F.F. Muhammadsharif, F.Ö. Alkurt, M. Bakir, B. Appasani, M. Karaaslan, and J. Dong, Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094 (2022).PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat S. Banerjee, P. Dutta, A.V. Jha, B. Appasani, and M.S. Khan, A biomedical sensor for detection of cancer cells based on terahertz metamaterial absorber. IEEE Sensors Lett. 6, 6002004 (2022).CrossRef S. Banerjee, P. Dutta, A.V. Jha, B. Appasani, and M.S. Khan, A biomedical sensor for detection of cancer cells based on terahertz metamaterial absorber. IEEE Sensors Lett. 6, 6002004 (2022).CrossRef
14.
Zurück zum Zitat D. Cheng, X. He, X. Huang, B. Zhang, G. Liu, G. Shu, C. Fang, J. Wang, and Y. Luo, Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. Int. J. RF Microw. Comput. Eng. 28, e21448 (2018).CrossRef D. Cheng, X. He, X. Huang, B. Zhang, G. Liu, G. Shu, C. Fang, J. Wang, and Y. Luo, Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. Int. J. RF Microw. Comput. Eng. 28, e21448 (2018).CrossRef
15.
Zurück zum Zitat S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson, X. Wei, and Y. Sun, Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10, 2101008 (2022).CrossRef S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson, X. Wei, and Y. Sun, Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10, 2101008 (2022).CrossRef
16.
Zurück zum Zitat R. Lai, H. Chen, Z. Zhou, Z. Yi, J. Chen, Y. Yi, C. Tang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef R. Lai, H. Chen, Z. Zhou, Z. Yi, J. Chen, Y. Yi, C. Tang, and T. Sun, Design of a penta-band graphene-based terahertz metamaterial absorber with fine sensing performance. Micromachines 14, 1802 (2023).PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat D. Wang, K.D. Xu, S. Luo, Y. Cui, L. Zhang, and J. Cui, A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 15, 3398 (2023).PubMedCrossRef D. Wang, K.D. Xu, S. Luo, Y. Cui, L. Zhang, and J. Cui, A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 15, 3398 (2023).PubMedCrossRef
18.
Zurück zum Zitat J. Liu, L. Fan, J. Su, S. Yang, H. Luo, X. Shen, and F. Ding, Study on a terahertz biosensor based on graphene-metamaterial, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 280, 121527 (2022).CrossRef J. Liu, L. Fan, J. Su, S. Yang, H. Luo, X. Shen, and F. Ding, Study on a terahertz biosensor based on graphene-metamaterial, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 280, 121527 (2022).CrossRef
19.
Zurück zum Zitat H. Zhou, C. Yang, D. Hu, D. Li, X. Hui, F. Zhang, M. Chen, and X. Mu, Terahertz biosensing based on Bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 115, 143507 (2019).CrossRef H. Zhou, C. Yang, D. Hu, D. Li, X. Hui, F. Zhang, M. Chen, and X. Mu, Terahertz biosensing based on Bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 115, 143507 (2019).CrossRef
20.
21.
Zurück zum Zitat X. Huang, W. Ye, J. Ran, Z. Zou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef X. Huang, W. Ye, J. Ran, Z. Zou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef
22.
Zurück zum Zitat H. Zou and Y. Cheng, Design of a Six-Band Terahertz Metamaterial Absorber for Temperature Sensing Application, Opt. Mater. (Amst). 88, 674 (2019). H. Zou and Y. Cheng, Design of a Six-Band Terahertz Metamaterial Absorber for Temperature Sensing Application, Opt. Mater. (Amst). 88, 674 (2019).
23.
Zurück zum Zitat M. Aslinezhad, High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 463, 125411 (2020).CrossRef M. Aslinezhad, High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 463, 125411 (2020).CrossRef
24.
Zurück zum Zitat J. Yu, T. Lang, and H. Chen, All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics 8, 164 (2021).CrossRef J. Yu, T. Lang, and H. Chen, All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics 8, 164 (2021).CrossRef
25.
Zurück zum Zitat G. Palermo, K.V. Sreekanth, N. Maccaferri, G.E. Lio, G. Nicoletta, F. De Angelis, M. Hinczewski, and G. Strangi, Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics. 10, 295 (2020).CrossRef G. Palermo, K.V. Sreekanth, N. Maccaferri, G.E. Lio, G. Nicoletta, F. De Angelis, M. Hinczewski, and G. Strangi, Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics. 10, 295 (2020).CrossRef
26.
Zurück zum Zitat R. Hokari, Y. Kanamori, and K. Hane, Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths. Opt. Express 22, 3526 (2014).PubMedCrossRef R. Hokari, Y. Kanamori, and K. Hane, Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths. Opt. Express 22, 3526 (2014).PubMedCrossRef
27.
Zurück zum Zitat W. Wang, W. Wang, F. Yan, Z. Wang, H. Li, S. Tan, and X. Du, Numerical research on supercavity sensing driven by guided resonance in a terahertz all-metal metamaterial absorber. Opt. Laser Technol. 169, 110113 (2024).CrossRef W. Wang, W. Wang, F. Yan, Z. Wang, H. Li, S. Tan, and X. Du, Numerical research on supercavity sensing driven by guided resonance in a terahertz all-metal metamaterial absorber. Opt. Laser Technol. 169, 110113 (2024).CrossRef
28.
Zurück zum Zitat W. Wenhao, L. Besteiro, P. Yu, F. Lin, A. Govorov, H. Xu, and Z. Wang, Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics 10, 1911 (2021).CrossRef W. Wenhao, L. Besteiro, P. Yu, F. Lin, A. Govorov, H. Xu, and Z. Wang, Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics 10, 1911 (2021).CrossRef
29.
Zurück zum Zitat D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42, 450 (2017).PubMedCrossRef D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42, 450 (2017).PubMedCrossRef
30.
Zurück zum Zitat D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 036617 (2005).CrossRef D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 036617 (2005).CrossRef
31.
Zurück zum Zitat J. Li, Y. Liu, Z. Wang, Dual-resonant terahertz metamaterial with High Q-factors, in IEEE International Conference on Communiction Problem-Solving (2014), p 291 J. Li, Y. Liu, Z. Wang, Dual-resonant terahertz metamaterial with High Q-factors, in IEEE International Conference on Communiction Problem-Solving (2014), p 291
32.
Zurück zum Zitat B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015).CrossRef B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015).CrossRef
33.
Zurück zum Zitat Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R.S. Cumming, A Terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945 (2011).PubMedCrossRef Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R.S. Cumming, A Terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945 (2011).PubMedCrossRef
34.
Zurück zum Zitat R.M.H. Bilal, M.A. Saeed, M.A. Naveed, M. Zubair, M.Q. Mehmood, and Y. Massoud, Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials 12, 3356 (2022).PubMedPubMedCentralCrossRef R.M.H. Bilal, M.A. Saeed, M.A. Naveed, M. Zubair, M.Q. Mehmood, and Y. Massoud, Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials 12, 3356 (2022).PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat S. Kalraiya, R.K. Chaudhary, and R.K. Gangwar, Polarization independent triple band ultrathin conformal metamaterial absorber for C- and X-frequency bands. AEU - Int. J. Electron. Commun. 135, 153752 (2021).CrossRef S. Kalraiya, R.K. Chaudhary, and R.K. Gangwar, Polarization independent triple band ultrathin conformal metamaterial absorber for C- and X-frequency bands. AEU - Int. J. Electron. Commun. 135, 153752 (2021).CrossRef
36.
Zurück zum Zitat C.A. Balanis, Advanced engineering electromagnetics, 2nd ed., (NJ: John Wiley & Sons, 2012). C.A. Balanis, Advanced engineering electromagnetics, 2nd ed., (NJ: John Wiley & Sons, 2012).
37.
Zurück zum Zitat H.-K. Yuan, U.K. Chettiar, W. Cai, A.V. Kildishev, A. Boltasseva, V.P. Drachev, and V.M. Shalaev, A negative permeability material at red light. Opt. Express 15, 1076 (2007).PubMedCrossRef H.-K. Yuan, U.K. Chettiar, W. Cai, A.V. Kildishev, A. Boltasseva, V.P. Drachev, and V.M. Shalaev, A negative permeability material at red light. Opt. Express 15, 1076 (2007).PubMedCrossRef
38.
Zurück zum Zitat R. Asgharian, B. Zakeri, and O. Karimi, Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU - Int. J. Electron. Commun. 87, 119 (2018).CrossRef R. Asgharian, B. Zakeri, and O. Karimi, Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU - Int. J. Electron. Commun. 87, 119 (2018).CrossRef
39.
Zurück zum Zitat M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin, and M.T. Islam, A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239 (2020).CrossRef M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin, and M.T. Islam, A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239 (2020).CrossRef
40.
Zurück zum Zitat H. Li, Design and simulation of a metabsorber based on equivalent circuit method, in IEEE International Conference on Computational Electromagnetics (ICCEM) (2018), p 1 H. Li, Design and simulation of a metabsorber based on equivalent circuit method, in IEEE International Conference on Computational Electromagnetics (ICCEM) (2018), p 1
41.
Zurück zum Zitat M. Zhao, J. Xu, and J. Zhao, Design and analysis of dual-band FSS based on equivalent circuit. Int. J. RF Microw. Comput. Eng. 32, e23405 (2022). M. Zhao, J. Xu, and J. Zhao, Design and analysis of dual-band FSS based on equivalent circuit. Int. J. RF Microw. Comput. Eng. 32, e23405 (2022).
43.
Zurück zum Zitat A.K. Singh, M.P. Abegaonkar, and S.K. Koul, Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Trans. Electromagn. Compat. 61, 878 (2019).CrossRef A.K. Singh, M.P. Abegaonkar, and S.K. Koul, Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Trans. Electromagn. Compat. 61, 878 (2019).CrossRef
44.
Zurück zum Zitat M.L. Hakim, T. Alam, M.T. Islam, H. Alsaif, and M.S. Soliman, Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (Mm-Wave) band applications. Measurement 210, 112545 (2023).CrossRef M.L. Hakim, T. Alam, M.T. Islam, H. Alsaif, and M.S. Soliman, Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (Mm-Wave) band applications. Measurement 210, 112545 (2023).CrossRef
45.
Zurück zum Zitat A. Darvishzadeh, N. Alharbi, A. Mosavi, and N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate. Phys. B Condens. Matter 543, 14 (2018).CrossRef A. Darvishzadeh, N. Alharbi, A. Mosavi, and N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate. Phys. B Condens. Matter 543, 14 (2018).CrossRef
46.
Zurück zum Zitat I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).CrossRef I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017).CrossRef
47.
Zurück zum Zitat Z. Gajinov, M. Matić, S. Prćić, and V. Đuran, Optical Properties of the Human Skin / Optičke Osobine Ljudske Kože. Serbian J. Dermatol. Venerol. 2, 131 (2010).CrossRef Z. Gajinov, M. Matić, S. Prćić, and V. Đuran, Optical Properties of the Human Skin / Optičke Osobine Ljudske Kože. Serbian J. Dermatol. Venerol. 2, 131 (2010).CrossRef
48.
Zurück zum Zitat S. Banerjee, U. Nath, P. Dutta, A.V. Jha, B. Appasani, and N. Bizon, A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 6, 78 (2021).CrossRef S. Banerjee, U. Nath, P. Dutta, A.V. Jha, B. Appasani, and N. Bizon, A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 6, 78 (2021).CrossRef
49.
Zurück zum Zitat P. Sharan, SM. Bharadwaj, F. Dackson Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), p 20 P. Sharan, SM. Bharadwaj, F. Dackson Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), p 20
50.
Zurück zum Zitat XJ. Liang, AQ. Liu, XM. Zhang, PH. Yap, TC. Ayi, HS. Yoon, Determination of refractive index for single living cell using integrated biochip, in the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, (2005), p 1712 XJ. Liang, AQ. Liu, XM. Zhang, PH. Yap, TC. Ayi, HS. Yoon, Determination of refractive index for single living cell using integrated biochip, in the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, (2005), p 1712
51.
Zurück zum Zitat A.N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, and V. Neel, High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644 (2012).PubMedCrossRef A.N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, and V. Neel, High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644 (2012).PubMedCrossRef
52.
Zurück zum Zitat M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, and M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11, 1 (2019).CrossRef M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, and M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11, 1 (2019).CrossRef
53.
Zurück zum Zitat P. Sharma, P. Sharan, P. Deshmukh, A Photonic Crystal Sensor for Analysis and Detection of Cancer Cells, in International Conference on Pervasive Computing (ICPC) (2015), p 1 P. Sharma, P. Sharan, P. Deshmukh, A Photonic Crystal Sensor for Analysis and Detection of Cancer Cells, in International Conference on Pervasive Computing (ICPC) (2015), p 1
54.
Zurück zum Zitat P. Kumar, V.K. Rohan, and J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik (Stuttg) 144, 363 (2017).CrossRef P. Kumar, V.K. Rohan, and J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik (Stuttg) 144, 363 (2017).CrossRef
55.
Zurück zum Zitat K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, and M.S. Uddin, Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the terahertz range. IET Optoelectron. 15, 1 (2021).CrossRef K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, and M.S. Uddin, Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the terahertz range. IET Optoelectron. 15, 1 (2021).CrossRef
56.
Zurück zum Zitat J.-T. Lin, D.-C. Cheng, M. Jiang, Y.-S. Chiang, and H.-W. Liu, Analysis of scaling law and figure of merit of fiber-based biosensor. J. Nanomater. 2012, 154736 (2012).CrossRef J.-T. Lin, D.-C. Cheng, M. Jiang, Y.-S. Chiang, and H.-W. Liu, Analysis of scaling law and figure of merit of fiber-based biosensor. J. Nanomater. 2012, 154736 (2012).CrossRef
57.
Zurück zum Zitat Y. Wang, Y. Yi, D. Xu, Z. Yi, Z. Li, X. Chen, H. Jile, J. Zhang, L. Zeng, and G. Li, Terahertz tunable three band narrowband perfect absorber based on dirac semimetal. Phys. E Low-Dimens. Syst. Nanostruct. 131, 114750 (2021).CrossRef Y. Wang, Y. Yi, D. Xu, Z. Yi, Z. Li, X. Chen, H. Jile, J. Zhang, L. Zeng, and G. Li, Terahertz tunable three band narrowband perfect absorber based on dirac semimetal. Phys. E Low-Dimens. Syst. Nanostruct. 131, 114750 (2021).CrossRef
58.
Zurück zum Zitat A.S. Saadeldin, M.F.O. Hameed, E.M.A. Elkaramany, and S.S.A. Obayya, Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993 (2019).CrossRef A.S. Saadeldin, M.F.O. Hameed, E.M.A. Elkaramany, and S.S.A. Obayya, Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993 (2019).CrossRef
59.
Zurück zum Zitat B.-X. Wang, Y. He, P. Lou, and W. Xing, Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763 (2020).PubMedPubMedCentralCrossRef B.-X. Wang, Y. He, P. Lou, and W. Xing, Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763 (2020).PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat M.-R. Nickpay, M. Danaie, and A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 17, 237 (2022).CrossRef M.-R. Nickpay, M. Danaie, and A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 17, 237 (2022).CrossRef
61.
Zurück zum Zitat M. Karthikeyan, P. Jayabala, S. Ramachandran, S. Dhanabalan, T. Sivanesan, and M. Ponnusamy, Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials 12, 2693 (2022).PubMedPubMedCentralCrossRef M. Karthikeyan, P. Jayabala, S. Ramachandran, S. Dhanabalan, T. Sivanesan, and M. Ponnusamy, Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials 12, 2693 (2022).PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat F. Ghaedi Vanani, A. Fardoost, and R. Safian, Design of double ring label-free terahertz sensor. IEEE Sens. J. 19, 1293 (2019).CrossRef F. Ghaedi Vanani, A. Fardoost, and R. Safian, Design of double ring label-free terahertz sensor. IEEE Sens. J. 19, 1293 (2019).CrossRef
63.
Zurück zum Zitat X. Yan, L.-J. Liang, X. Ding, and J.-Q. Yao, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Opt. Eng. 56, 027104 (2017).CrossRef X. Yan, L.-J. Liang, X. Ding, and J.-Q. Yao, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Opt. Eng. 56, 027104 (2017).CrossRef
64.
Zurück zum Zitat M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R.D. Averitt, and X. Zhang, A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 111, 051101 (2017).CrossRef M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R.D. Averitt, and X. Zhang, A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 111, 051101 (2017).CrossRef
65.
Zurück zum Zitat X. Huang, W. Ye, J. Ran, Z. Zhou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef X. Huang, W. Ye, J. Ran, Z. Zhou, R. Li, and B. Gao, Highly sensitive biosensor based on metamaterial absorber with an all-metal structure. IEEE Sens. J. 23, 3573 (2023).CrossRef
66.
Zurück zum Zitat J. Wang, T. Lang, Z. Hong, M. Xiao, and J. Yu, Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials 11, 1110 (2021).PubMedPubMedCentralCrossRef J. Wang, T. Lang, Z. Hong, M. Xiao, and J. Yu, Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials 11, 1110 (2021).PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat E. Mohajerani, F. Farajollahi, R. Mahzoon, and S. Baghery, Morphological and thickness analysis for PMMA spin coated films. J. Optoelectron. Adv. Mater. 9, 3901 (2007). E. Mohajerani, F. Farajollahi, R. Mahzoon, and S. Baghery, Morphological and thickness analysis for PMMA spin coated films. J. Optoelectron. Adv. Mater. 9, 3901 (2007).
68.
Zurück zum Zitat M. Mayer, M. Tebbe, C. Kuttner, M.J. Schnepf, T.A. König, and A. Fery, Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss. 191, 159 (2016).PubMedPubMedCentralCrossRef M. Mayer, M. Tebbe, C. Kuttner, M.J. Schnepf, T.A. König, and A. Fery, Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss. 191, 159 (2016).PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Tech. 7, 2101171 (2022).CrossRef C. Chen, M. Chai, M. Jin, and T. He, Terahertz metamaterial absorbers. Adv. Mater. Tech. 7, 2101171 (2022).CrossRef
Metadaten
Titel
A Dual-Band Terahertz Metamaterial Absorber Using an All-Metal Aluminum Hexagonal Metasurface Structure for Sensing of Cancerous Cells
verfasst von
Ahmet Teber
Publikationsdatum
17.03.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 5/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10999-w

Weitere Artikel der Ausgabe 5/2024

Journal of Electronic Materials 5/2024 Zur Ausgabe

Neuer Inhalt