Skip to main content
Erschienen in: Journal of Electronic Materials 5/2024

02.03.2024 | Original Research Article

Upconversion Spectral Modulation and Temperature Sensing of NaYF4:Yb3+/Ho3+/Tm3+/Gd3+ Nanorods with Resistance to Thermal Quenching

verfasst von: Wei Zhou, Jian Yang, Xiangliang Jin

Erschienen in: Journal of Electronic Materials | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Upconversion (UC) nanomaterials are of interest to researchers because of their excellent photostability, effective quantum efficiency and optical temperature dependence. However, most UC nanomaterials are thermally quenched, which causes optical nanothermometers to be susceptible to their own thermal effects, reducing the accuracy of temperature measurements. In this paper, NaYF4:Yb3+/Ho3+/Tm3+/Gd3+ nanorods with UC luminescence and resistance to thermal quenching are prepared through a simple hydrothermal method. The UC luminescence intensity of NaYF4:Yb3+/Ho3+/Tm3+/Gd3+ nanorods is adjusted by doping with Tm3+ ions. The luminescence intensity at each location shows different temperature dependence as the temperature increases. When the temperature reaches 573 K, the integrated luminescence intensity is three times that at 293 K. At the same time, the intensity at all temperature points in the range of 293–573 K is greater than the intensity at 293 K, which shows that the nanorods have excellent resistance to thermal quenching. In addition, the relative sensitivity (Sr) of LIR(I696/I476), LIR(I696/I541), LIR(I696/I646), LIR(I696/I802), and LIR(I541/I476) is investigated based on the luminescence intensity ratio (LIR) technique. The Sr of LIR(I696/I802) is found to have larger values in the low-temperature range, while Sr of LIR(I696/I476) has larger values in the high-temperature range. The use of LIR(I696/I802) and LIR(I696/I476) in separate temperature bands allows Sr to reach 0.93–1.67 %K−1 in the range of 293–573 K, confirming that the nanorods have high Sr over a wide temperature interval. This study indicates that the NaYF4:Yb3+/Ho3+/Tm3+/Gd3+ nanorods are promising candidates for optical thermometers with high sensitivity, wide temperature range, and resistance to thermal quenching.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Wilhelmy, A. Zimare, Q. Zhang, M. Rettenmayr, and S. Lippmann, Measurement of the curie temperature based on temperature dependent thermal properties. Int. Commun. Heat. Mass. 124, 105239 (2021).CrossRef S. Wilhelmy, A. Zimare, Q. Zhang, M. Rettenmayr, and S. Lippmann, Measurement of the curie temperature based on temperature dependent thermal properties. Int. Commun. Heat. Mass. 124, 105239 (2021).CrossRef
2.
Zurück zum Zitat S.J. Newell and D. Morley, A study of the bimetal coil thermometer for clinical use. T. Roy. Soc. Trop. Med. H. 75, 699–701 (1981).CrossRef S.J. Newell and D. Morley, A study of the bimetal coil thermometer for clinical use. T. Roy. Soc. Trop. Med. H. 75, 699–701 (1981).CrossRef
3.
Zurück zum Zitat H. Rodríguez, M. Williams, J.S. Wilkes, and R.D. Rogers, Ionic liquids for liquid-in-glass thermometers. Green Chem. 10, 501–507 (2008).CrossRef H. Rodríguez, M. Williams, J.S. Wilkes, and R.D. Rogers, Ionic liquids for liquid-in-glass thermometers. Green Chem. 10, 501–507 (2008).CrossRef
4.
Zurück zum Zitat H.S. Tomkins, R. Powell, and D.J. Ellis, The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 25, 703–713 (2017).CrossRef H.S. Tomkins, R. Powell, and D.J. Ellis, The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 25, 703–713 (2017).CrossRef
5.
Zurück zum Zitat U. Babita, H. Pant, G. Meena, K. Gupta, and D.D. Bapna, Shivagan, Evaluation of self-heating effect in platinum resistance thermometers. Measurement 203, 111994 (2022).CrossRef U. Babita, H. Pant, G. Meena, K. Gupta, and D.D. Bapna, Shivagan, Evaluation of self-heating effect in platinum resistance thermometers. Measurement 203, 111994 (2022).CrossRef
6.
Zurück zum Zitat X.F. Zhang, Z. Yao, Y.Y. Guo, and C.N. Wang, Target wave in the network coupled by thermistors. Chaos Soliton. Fract. 142, 110455 (2021).CrossRef X.F. Zhang, Z. Yao, Y.Y. Guo, and C.N. Wang, Target wave in the network coupled by thermistors. Chaos Soliton. Fract. 142, 110455 (2021).CrossRef
7.
Zurück zum Zitat L.S. Jutte, K.L. Knight, and B.C. Long, Reliability and validity of electrothermometers and associated thermocouples. J. Sport Rehabil. 17, 50–59 (2008).PubMedCrossRef L.S. Jutte, K.L. Knight, and B.C. Long, Reliability and validity of electrothermometers and associated thermocouples. J. Sport Rehabil. 17, 50–59 (2008).PubMedCrossRef
8.
Zurück zum Zitat T.C.P. Chui, P. Day, I. Hahn, A.E. Nash, D.R. Swanson, J.A. Nissen, P.R. Williamson, and J.A. Lipa, High resolution thermometers for ground and space applications. Cryogenics 34, 417–420 (1994).CrossRef T.C.P. Chui, P. Day, I. Hahn, A.E. Nash, D.R. Swanson, J.A. Nissen, P.R. Williamson, and J.A. Lipa, High resolution thermometers for ground and space applications. Cryogenics 34, 417–420 (1994).CrossRef
9.
Zurück zum Zitat X.Y. Wu, J.H. Li, F.F. Liu, C.F. Liao, S.M. Chen, and X.J. Wang, Optical noninvasive temperature measurement of molten melts in metallurgical process: a review. MAPAN-J. Metrol. Soc. I(37), 793–809 (2022).CrossRef X.Y. Wu, J.H. Li, F.F. Liu, C.F. Liao, S.M. Chen, and X.J. Wang, Optical noninvasive temperature measurement of molten melts in metallurgical process: a review. MAPAN-J. Metrol. Soc. I(37), 793–809 (2022).CrossRef
10.
Zurück zum Zitat Z.Z. Du, B. Hu, N. Ye, Y. Sun, H.C. Zhang, and S. Bai, A temperature imaging method for multi-chip high power LEDs based on the magnetic nanoparticle thermometer. Nanomaterials 12, 3280 (2022).PubMedPubMedCentralCrossRef Z.Z. Du, B. Hu, N. Ye, Y. Sun, H.C. Zhang, and S. Bai, A temperature imaging method for multi-chip high power LEDs based on the magnetic nanoparticle thermometer. Nanomaterials 12, 3280 (2022).PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat J. Yang, Y.X. Liu, Y.Y. Zhao, Z. Gong, M. Zhang, D.T. Yan, H.C. Zhu, C.G. Liu, C.S. Xu, and H. Zhang, Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29, 8119–8131 (2017).CrossRef J. Yang, Y.X. Liu, Y.Y. Zhao, Z. Gong, M. Zhang, D.T. Yan, H.C. Zhu, C.G. Liu, C.S. Xu, and H. Zhang, Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29, 8119–8131 (2017).CrossRef
12.
Zurück zum Zitat R.H. Zhang and W.H. Liu, Research on calculation method of fuel temperature according to airworthiness regulations. Int. J. Aeronaut. Space. 22, 1504–1511 (2021).CrossRef R.H. Zhang and W.H. Liu, Research on calculation method of fuel temperature according to airworthiness regulations. Int. J. Aeronaut. Space. 22, 1504–1511 (2021).CrossRef
13.
Zurück zum Zitat L.L. Xing, R. Ao, Y.S. Liu, and W.Q. Yang, Optical thermometry based on the non-thermally coupled levels of Tm(III) in LiNbO3 crystals. Spectrochim. ACTAA. 222, 117159 (2019).CrossRef L.L. Xing, R. Ao, Y.S. Liu, and W.Q. Yang, Optical thermometry based on the non-thermally coupled levels of Tm(III) in LiNbO3 crystals. Spectrochim. ACTAA. 222, 117159 (2019).CrossRef
14.
Zurück zum Zitat A. Pandey, and V.K. Rai, Optical thermometry using FIR of two close lying levels of different ions in Y2O3:Ho3+-Tm3+-Yb3+ phosphor. Appl. Phys. B 113, 221–225 (2013).CrossRef A. Pandey, and V.K. Rai, Optical thermometry using FIR of two close lying levels of different ions in Y2O3:Ho3+-Tm3+-Yb3+ phosphor. Appl. Phys. B 113, 221–225 (2013).CrossRef
15.
Zurück zum Zitat T. Zheng, M. Runowski, N. Stopikowska, M. Skwierczyńska, S. Lis, P. Du, and L.H. Luo, Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. J. Alloy. Compd. 890, 161830 (2021).CrossRef T. Zheng, M. Runowski, N. Stopikowska, M. Skwierczyńska, S. Lis, P. Du, and L.H. Luo, Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. J. Alloy. Compd. 890, 161830 (2021).CrossRef
16.
Zurück zum Zitat I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin, E.V. Golyeva, E.Y. Kolesnikov, A.V. Kurochkin, E. Lähderanta, and M.D. Mikhailov, YVO4:Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range. Sci. Rep. 7, 18002 (2017).PubMedPubMedCentralCrossRef I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin, E.V. Golyeva, E.Y. Kolesnikov, A.V. Kurochkin, E. Lähderanta, and M.D. Mikhailov, YVO4:Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range. Sci. Rep. 7, 18002 (2017).PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat J.J. Zhou, B.D. Rosal, D. Jaque, S. Uchiyama, and D.Y. Jin, Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020).PubMedCrossRef J.J. Zhou, B.D. Rosal, D. Jaque, S. Uchiyama, and D.Y. Jin, Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020).PubMedCrossRef
18.
Zurück zum Zitat J.J. Su, P.P. Jiang, W. Cui, B. Wu, and Y.H. Shen, Novel digital iteration algorithm for fluorescence lifetime measurement of multi-probe fiber thermometer. Measurement 92, 428–432 (2016).CrossRef J.J. Su, P.P. Jiang, W. Cui, B. Wu, and Y.H. Shen, Novel digital iteration algorithm for fluorescence lifetime measurement of multi-probe fiber thermometer. Measurement 92, 428–432 (2016).CrossRef
19.
Zurück zum Zitat S.F. Liu, J. Cui, J.J. Jia, J.X. Fu, W.X. You, Q.Y. Zeng, Y.M. Yang, and X.Y. Ye, High sensitive Ln3+/Tm3+/Yb3+ (Ln3+=Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram. Int. 45, 1–10 (2019).CrossRef S.F. Liu, J. Cui, J.J. Jia, J.X. Fu, W.X. You, Q.Y. Zeng, Y.M. Yang, and X.Y. Ye, High sensitive Ln3+/Tm3+/Yb3+ (Ln3+=Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram. Int. 45, 1–10 (2019).CrossRef
20.
Zurück zum Zitat S.W. Yuan, S. Zhao, L.L. Lou, D.Y. Zhu, Z.F. Mu, and F.G. Wu, Fluorescence intensity ratio optical thermometer YNbO4: Pr3+, Tb3+ based on intervalence charge transfer. Powder Technol. 395, 83–92 (2022).CrossRef S.W. Yuan, S. Zhao, L.L. Lou, D.Y. Zhu, Z.F. Mu, and F.G. Wu, Fluorescence intensity ratio optical thermometer YNbO4: Pr3+, Tb3+ based on intervalence charge transfer. Powder Technol. 395, 83–92 (2022).CrossRef
21.
Zurück zum Zitat H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials. Sensor. Actuat. A-Phys. 126, 78–82 (2006).CrossRef H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials. Sensor. Actuat. A-Phys. 126, 78–82 (2006).CrossRef
22.
Zurück zum Zitat E.A. Lalla, S.F. León-Luis, V. Monteseguro, C. Pérez-Rodríguez, J.M. Cáceres, V. Lavín, and U.R. Rodríguez-Mendoza, Optical temperature sensor based on the Nd3+ infrared thermalized emissions in a fluorotellurite glass. J. Lumin. 166, 209–214 (2015).CrossRef E.A. Lalla, S.F. León-Luis, V. Monteseguro, C. Pérez-Rodríguez, J.M. Cáceres, V. Lavín, and U.R. Rodríguez-Mendoza, Optical temperature sensor based on the Nd3+ infrared thermalized emissions in a fluorotellurite glass. J. Lumin. 166, 209–214 (2015).CrossRef
23.
Zurück zum Zitat M. Runowski, A. Bartkowiak, M. Majewska, I.R. Martín, and S. Lis, Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+-optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. J. Lumin. 201, 104–109 (2018).CrossRef M. Runowski, A. Bartkowiak, M. Majewska, I.R. Martín, and S. Lis, Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+-optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. J. Lumin. 201, 104–109 (2018).CrossRef
24.
Zurück zum Zitat Y.C. Zhang, H.Z. Yao, Y. Xu, and Z.G. Xia, Synergistic weak/strong coupling luminescence in Eu-metal-organic framework/Zn2GeO4:Mn2+ nanocomposites for ratiometric luminescence thermometer. Dyes Pigments 157, 321–327 (2018).CrossRef Y.C. Zhang, H.Z. Yao, Y. Xu, and Z.G. Xia, Synergistic weak/strong coupling luminescence in Eu-metal-organic framework/Zn2GeO4:Mn2+ nanocomposites for ratiometric luminescence thermometer. Dyes Pigments 157, 321–327 (2018).CrossRef
25.
Zurück zum Zitat Z.L. Cheng, M.Z. Meng, X. Qiao, Y.L. Liu, U. Resch-Genger, and J. Ou, The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power. J. Alloy. Compd. 937, 168299 (2023).CrossRef Z.L. Cheng, M.Z. Meng, X. Qiao, Y.L. Liu, U. Resch-Genger, and J. Ou, The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power. J. Alloy. Compd. 937, 168299 (2023).CrossRef
26.
Zurück zum Zitat Z. Cheng, M. Meng, J. Wang, Z. Li, J. He, H. Liang, X. Qiao, Y. Liu, and J. Ou, High-sensitivity NaYF4:Yb3+/Ho3+/Tm3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels. Nanoscale 15, 11179 (2023).PubMedCrossRef Z. Cheng, M. Meng, J. Wang, Z. Li, J. He, H. Liang, X. Qiao, Y. Liu, and J. Ou, High-sensitivity NaYF4:Yb3+/Ho3+/Tm3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels. Nanoscale 15, 11179 (2023).PubMedCrossRef
27.
Zurück zum Zitat M.Z. Meng, T.M. Zhang, J.Y. Wang, Z.L. Cheng, Y.L. Liu, X. Qiao, J. Wen, U. Resch-Genger, W. Long, and J. Ou, NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles for optical temperature monitoring and self-Heating in photothermal therapy. ACS Appl. Nano Mater. 6, 759–771 (2023).CrossRef M.Z. Meng, T.M. Zhang, J.Y. Wang, Z.L. Cheng, Y.L. Liu, X. Qiao, J. Wen, U. Resch-Genger, W. Long, and J. Ou, NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles for optical temperature monitoring and self-Heating in photothermal therapy. ACS Appl. Nano Mater. 6, 759–771 (2023).CrossRef
28.
Zurück zum Zitat Y.Y. Tu, S.L. Zhao, D.Y. He, T. Wu, H. Zhang, R.S. Lei, L.H. Huang, and S.Q. Xu, A portable all-fiber thermometer based on the fluorescence intensity ratio (FIR) technique in rare earth doped TeO2–WO3–La2O3–Na2O glass. J. Mater. Chem. C 6, 7063 (2018).CrossRef Y.Y. Tu, S.L. Zhao, D.Y. He, T. Wu, H. Zhang, R.S. Lei, L.H. Huang, and S.Q. Xu, A portable all-fiber thermometer based on the fluorescence intensity ratio (FIR) technique in rare earth doped TeO2–WO3–La2O3–Na2O glass. J. Mater. Chem. C 6, 7063 (2018).CrossRef
29.
Zurück zum Zitat L.Q. Yang, Y.D. Ding, X.K. Wen, H.C. Zhu, G.R. Wang, X.H. Li, and X. Hong, Ratiometric optical thermometry based on a Dy3+, Eu3+ co-doped GdAl3(BO3)4 phosphor. New J. Chem. 46, 19534–19541 (2022).CrossRef L.Q. Yang, Y.D. Ding, X.K. Wen, H.C. Zhu, G.R. Wang, X.H. Li, and X. Hong, Ratiometric optical thermometry based on a Dy3+, Eu3+ co-doped GdAl3(BO3)4 phosphor. New J. Chem. 46, 19534–19541 (2022).CrossRef
30.
Zurück zum Zitat K. Soler-Carracedo, I.R. Martín, F. Lahoz, H.C. Vasconcelos, A.D. Lozano-Gorrín, L.L. Martín, and F. Paz-Buclatin, Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures. J. Alloy. Compd. 847, 156541 (2020).CrossRef K. Soler-Carracedo, I.R. Martín, F. Lahoz, H.C. Vasconcelos, A.D. Lozano-Gorrín, L.L. Martín, and F. Paz-Buclatin, Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures. J. Alloy. Compd. 847, 156541 (2020).CrossRef
31.
Zurück zum Zitat W. Zhou, J. Yang, X.L. Jin, Y. Peng, and J. Luo, A NaYF4:Gd3+/Yb3+/Er3+/Tm3+ nanorods with infrared thermally enhanced upconversion luminescence for optical thermometers. Physica B 653, 414667 (2023).CrossRef W. Zhou, J. Yang, X.L. Jin, Y. Peng, and J. Luo, A NaYF4:Gd3+/Yb3+/Er3+/Tm3+ nanorods with infrared thermally enhanced upconversion luminescence for optical thermometers. Physica B 653, 414667 (2023).CrossRef
32.
Zurück zum Zitat S. Balabhadra, M.F. Reid, V. Golovko, and J.P.R. Wells, A comparison of the Yb3+ absorption and upconversion excitation spectra for both the cubic and hexagonal phases of NaYF4:Yb3+/Er3+ nanoparticles. Opt. Mater. 107, 110050 (2020).CrossRef S. Balabhadra, M.F. Reid, V. Golovko, and J.P.R. Wells, A comparison of the Yb3+ absorption and upconversion excitation spectra for both the cubic and hexagonal phases of NaYF4:Yb3+/Er3+ nanoparticles. Opt. Mater. 107, 110050 (2020).CrossRef
33.
Zurück zum Zitat X.S. Zhai, Y. Wang, X.J. Liu, S.H. Liu, P.P. Lei, S. Yao, S.Y. Song, L. Zhou, J. Feng, and H.J. Zhang, A simple strategy for the controlled synthesis of ultrasmall hexagonal-phase NaYF4:Yb Er upconversion nanocrystals. Chem. Photo. Chem. 1, 369–375 (2017). X.S. Zhai, Y. Wang, X.J. Liu, S.H. Liu, P.P. Lei, S. Yao, S.Y. Song, L. Zhou, J. Feng, and H.J. Zhang, A simple strategy for the controlled synthesis of ultrasmall hexagonal-phase NaYF4:Yb Er upconversion nanocrystals. Chem. Photo. Chem. 1, 369–375 (2017).
34.
Zurück zum Zitat D.D. Li, W.Y. Lai, Q.Y. Shao, and W. Huang, A facile methodology for regulating the size of hexagonal NaYF4:Yb3+, Er3+ upconversion nanocrystals. New J. Chem. 41, 11521–11524 (2017).CrossRef D.D. Li, W.Y. Lai, Q.Y. Shao, and W. Huang, A facile methodology for regulating the size of hexagonal NaYF4:Yb3+, Er3+ upconversion nanocrystals. New J. Chem. 41, 11521–11524 (2017).CrossRef
35.
Zurück zum Zitat H. Chen, P.P. Zhang, H.N. Cui, W.P. Qin, and D. Zhao, Synthesis and luminescence properties of water soluble α-NaGdF4/β-NaYF4:Yb Er core-shell nanoparticles. Nanoscale Res. Lett. 12, 548 (2017).PubMedPubMedCentralCrossRef H. Chen, P.P. Zhang, H.N. Cui, W.P. Qin, and D. Zhao, Synthesis and luminescence properties of water soluble α-NaGdF4/β-NaYF4:Yb Er core-shell nanoparticles. Nanoscale Res. Lett. 12, 548 (2017).PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat H. Lin, D.K. Xu, A.M. Li, D.D. Teng, S.H. Yang, and Y.L. Zhang, Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals. J. Mater. Chem. C 3, 11754–11765 (2015).CrossRef H. Lin, D.K. Xu, A.M. Li, D.D. Teng, S.H. Yang, and Y.L. Zhang, Simultaneous realization of structure manipulation and emission enhancement in NaLuF4 upconversion crystals. J. Mater. Chem. C 3, 11754–11765 (2015).CrossRef
37.
Zurück zum Zitat Y.Y. Li, Y.H. Dong, T.T. Aidilibike, X.H. Liu, J.J. Guo, and W.P. Qin, Growth phase diagram and upconversion luminescence properties of NaLuF4:Yb3+/Tm3+/Gd3+ nanocrystals. RSC Adv. 7, 44531–44536 (2017).CrossRef Y.Y. Li, Y.H. Dong, T.T. Aidilibike, X.H. Liu, J.J. Guo, and W.P. Qin, Growth phase diagram and upconversion luminescence properties of NaLuF4:Yb3+/Tm3+/Gd3+ nanocrystals. RSC Adv. 7, 44531–44536 (2017).CrossRef
38.
Zurück zum Zitat H. Qin, D.Y. Wu, J. Sathian, X.Y. Xie, M. Ryan, and F. Xie, Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping. Sci. Rep. 8, 12683 (2018).PubMedPubMedCentralCrossRef H. Qin, D.Y. Wu, J. Sathian, X.Y. Xie, M. Ryan, and F. Xie, Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping. Sci. Rep. 8, 12683 (2018).PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat A.L.D. Guereñu, D.T. Klier, T. Haubitz, and M.U. Kumke, Influence of Gd3+ doping concentration on the properties of Na(Y, Gd)F4:Yb3+, Tm3+ upconverting nanoparticles and their long-term aging behavior. Photoch. Photobio. Sci. 21, 235–245 (2022).CrossRef A.L.D. Guereñu, D.T. Klier, T. Haubitz, and M.U. Kumke, Influence of Gd3+ doping concentration on the properties of Na(Y, Gd)F4:Yb3+, Tm3+ upconverting nanoparticles and their long-term aging behavior. Photoch. Photobio. Sci. 21, 235–245 (2022).CrossRef
40.
Zurück zum Zitat H. Li, X.B. Shi, X. Li, and L.B. Zong, Size-tunable β-NaYF4:Yb/Er up-converting nanoparticles with a strong green emission synthesized by thermal decomposition. Opt. Mater. 108, 110144 (2020).CrossRef H. Li, X.B. Shi, X. Li, and L.B. Zong, Size-tunable β-NaYF4:Yb/Er up-converting nanoparticles with a strong green emission synthesized by thermal decomposition. Opt. Mater. 108, 110144 (2020).CrossRef
41.
Zurück zum Zitat P. Du, A.M. Deng, L.H. Luo, and J.S. Yu, Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer. New J. Chem. 41, 13855–13861 (2017).CrossRef P. Du, A.M. Deng, L.H. Luo, and J.S. Yu, Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for non-invasion optical thermometer. New J. Chem. 41, 13855–13861 (2017).CrossRef
42.
Zurück zum Zitat C. Mi, J.J. Zhou, F. Wang, and D.Y. Jin, Thermal enhanced NIR-NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale 11, 12547–12552 (2019).PubMedCrossRef C. Mi, J.J. Zhou, F. Wang, and D.Y. Jin, Thermal enhanced NIR-NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale 11, 12547–12552 (2019).PubMedCrossRef
43.
Zurück zum Zitat Y.B. Wang, L. Lei, E.Y. Liu, Y. Cheng, and S.Q. Xu, Constructing highly sensitive ratiometric nanothermometers based on indirectly thermally coupled levels. Chem. Commun. 57, 9092 (2021).CrossRef Y.B. Wang, L. Lei, E.Y. Liu, Y. Cheng, and S.Q. Xu, Constructing highly sensitive ratiometric nanothermometers based on indirectly thermally coupled levels. Chem. Commun. 57, 9092 (2021).CrossRef
44.
Zurück zum Zitat L.Y. Zhou, Y.L. Chen, Y.Y. Shen, J.H. Lin, J. Fu, L. Lei, R.G. Ye, D.G. Deng, and S.Q. Xu, Designing optical thermometers using down/upconversion Ca14Al10Zn6O35:Ti4+, Eu3+/Yb3+, Er3+ thermosensitive phosphors. Inorg. Chem. 61, 10667–10677 (2022).PubMedCrossRef L.Y. Zhou, Y.L. Chen, Y.Y. Shen, J.H. Lin, J. Fu, L. Lei, R.G. Ye, D.G. Deng, and S.Q. Xu, Designing optical thermometers using down/upconversion Ca14Al10Zn6O35:Ti4+, Eu3+/Yb3+, Er3+ thermosensitive phosphors. Inorg. Chem. 61, 10667–10677 (2022).PubMedCrossRef
45.
Zurück zum Zitat L. Zhong, S. Jiang, X.H. Wang, Y.R. Li, Y.T. Wang, J.L. Xie, F.L. Ling, Y.J. Wang, G.T. Xiang, L. Li, and X.J. Zhou, Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors. Chem. Commun. 48, 30005–30011 (2022). L. Zhong, S. Jiang, X.H. Wang, Y.R. Li, Y.T. Wang, J.L. Xie, F.L. Ling, Y.J. Wang, G.T. Xiang, L. Li, and X.J. Zhou, Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors. Chem. Commun. 48, 30005–30011 (2022).
46.
Zurück zum Zitat K. Li, D.M. Zhu, and C.T. Yue, Exceptional low-temperature fluorescence sensing properties in novel KBaY(MoO4)3:Yb3+, Ho3+ materials based on FIR of Ho3+ transitions 5F5(1)→5I8/5S2→5I8. J. Mater. Chem. C 10, 6603 (2022).CrossRef K. Li, D.M. Zhu, and C.T. Yue, Exceptional low-temperature fluorescence sensing properties in novel KBaY(MoO4)3:Yb3+, Ho3+ materials based on FIR of Ho3+ transitions 5F5(1)→5I8/5S25I8. J. Mater. Chem. C 10, 6603 (2022).CrossRef
47.
Zurück zum Zitat C. Hernández-Álvarez, G. Brito-Santos, I.R. Martín, J. Sanchiz, K. Saidi, K. Soler-Carracedo, Ł Marciniak, and M. Runowski, Multifunctional optical sensing platform of temperature, pressure (vacuum) and laser power density: NaYF4: Gd3+, Yb3+, Er3+ nanomaterial as luminescent thermometer, manometer and power meter. J. Mater. Chem. C 11, 10221–10229 (2023).CrossRef C. Hernández-Álvarez, G. Brito-Santos, I.R. Martín, J. Sanchiz, K. Saidi, K. Soler-Carracedo, Ł Marciniak, and M. Runowski, Multifunctional optical sensing platform of temperature, pressure (vacuum) and laser power density: NaYF4: Gd3+, Yb3+, Er3+ nanomaterial as luminescent thermometer, manometer and power meter. J. Mater. Chem. C 11, 10221–10229 (2023).CrossRef
Metadaten
Titel
Upconversion Spectral Modulation and Temperature Sensing of NaYF4:Yb3+/Ho3+/Tm3+/Gd3+ Nanorods with Resistance to Thermal Quenching
verfasst von
Wei Zhou
Jian Yang
Xiangliang Jin
Publikationsdatum
02.03.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 5/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10957-6

Weitere Artikel der Ausgabe 5/2024

Journal of Electronic Materials 5/2024 Zur Ausgabe

Neuer Inhalt