Skip to main content
Erschienen in: Journal of Electronic Materials 5/2024

22.01.2024 | Original Research Article

High-Performance Microwave Absorption Properties of Pyramid-Shaped Metamaterials Based on Ni-Foam@Fe3O4

verfasst von: Guodong Han, Yudeng Wang, Junxiang Zhou, Yong Sun, Jiafu Wang, Shaobo Qu

Erschienen in: Journal of Electronic Materials | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A broadband pyramid-shaped nickel and ferric oxide (Ni-foam@Fe3O4) metamaterial is developed in this work. The optimal metamaterial structure with 1.3 g of Fe3O4 and a pyramid height of 20 mm shows a broad absorption band in the frequency range of 7.84–30 GHz, with absorbance exceeding 90%. The absorbance of transverse electric (TE) waves at incident angles up to 60° remains above 90% in the frequency range of 7.5–30 GHz. In terms of the transverse magnetic (TM) waves, the absorbance at 0°–45° exceeds 90% in the frequency range of 9.5–30 GHz. The mechanism of physical absorption is systematically investigated based on the electric/magnetic (E/H) field distribution and power energy loss. The results suggest the high potential of the as-fabricated metamaterial for practical application in ultra-broadband and polarization-insensitive microwave absorption (MA).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys-Uspekhi 10, 5 (1968).CrossRef V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys-Uspekhi 10, 5 (1968).CrossRef
2.
Zurück zum Zitat J.B. Pendry, A.J. Holden, W.J. Stewart, and I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 87, 3 (2001). J.B. Pendry, A.J. Holden, W.J. Stewart, and I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 87, 3 (2001).
3.
Zurück zum Zitat J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3 (2000).CrossRef J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3 (2000).CrossRef
4.
Zurück zum Zitat J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).CrossRef J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).CrossRef
5.
Zurück zum Zitat R.A. Shelby, R.D. Smith, and S. Schultz, Experimental verification of a negative index of refraction. Science 292, 2 (2001).CrossRef R.A. Shelby, R.D. Smith, and S. Schultz, Experimental verification of a negative index of refraction. Science 292, 2 (2001).CrossRef
6.
Zurück zum Zitat H.L. Luo, S.C. Wen, W.X. Shu, Z.X. Tang, Y.H. Zou, and D.Y. Fan, Rotational Doppler effect in left-handed materials. Phys. Rev. A 78, 6 (2008).CrossRef H.L. Luo, S.C. Wen, W.X. Shu, Z.X. Tang, Y.H. Zou, and D.Y. Fan, Rotational Doppler effect in left-handed materials. Phys. Rev. A 78, 6 (2008).CrossRef
7.
Zurück zum Zitat N. Seddon, and T. Bearpark, Observation of the inverse Doppler effect. Science 302, 3 (2003).CrossRef N. Seddon, and T. Bearpark, Observation of the inverse Doppler effect. Science 302, 3 (2003).CrossRef
8.
Zurück zum Zitat C.H. Chen, S.B. Qu, J.F. Wang, H. Ma, J. Wang, J.B. Zhao, X.H. Wang, K. Zhou, and Z. Xu, Wide-angle and polarization-independent three-dimensional magnetic metamaterials with and without substrates. J. Phys. D Appl. Phys. 44, 8 (2011). C.H. Chen, S.B. Qu, J.F. Wang, H. Ma, J. Wang, J.B. Zhao, X.H. Wang, K. Zhou, and Z. Xu, Wide-angle and polarization-independent three-dimensional magnetic metamaterials with and without substrates. J. Phys. D Appl. Phys. 44, 8 (2011).
9.
Zurück zum Zitat B.N. Wang, J.F. Zhou, K. Thoms, and M.S. Costas, Nonplanar chiral metamaterials with negative index. Appl. Phys. Lett. 94, 3 (2009). B.N. Wang, J.F. Zhou, K. Thoms, and M.S. Costas, Nonplanar chiral metamaterials with negative index. Appl. Phys. Lett. 94, 3 (2009).
10.
Zurück zum Zitat N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006).PubMedCrossRef N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006).PubMedCrossRef
11.
Zurück zum Zitat A. Habib, F. Brian, L. Hyundae, S.H. Yu, and H. Zhang, Double-Negat Acoustic Metamater. 7, 24 (2017). A. Habib, F. Brian, L. Hyundae, S.H. Yu, and H. Zhang, Double-Negat Acoustic Metamater. 7, 24 (2017).
12.
Zurück zum Zitat J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008).PubMedCrossRef J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008).PubMedCrossRef
13.
Zurück zum Zitat N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 3 (2008).CrossRef N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 3 (2008).CrossRef
14.
Zurück zum Zitat T. Hu, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7 (2008). T. Hu, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7 (2008).
15.
Zurück zum Zitat N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, and W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79(12), 125104 (2009).CrossRef N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, and W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79(12), 125104 (2009).CrossRef
16.
Zurück zum Zitat J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 2 (2011). J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 2 (2011).
17.
Zurück zum Zitat C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A metamaterial absorber with direction-selective and polarisation-insensitive properties. Chin. Phys. B Phys B 20(3), 037801 (2011).CrossRef C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A metamaterial absorber with direction-selective and polarisation-insensitive properties. Chin. Phys. B Phys B 20(3), 037801 (2011).CrossRef
18.
Zurück zum Zitat C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber. Prog Electromagnet Res Lett. 17, 8 (2010).CrossRef C. Gu, S.B. Qu, Z.B. Pei, and Z. Xu, A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber. Prog Electromagnet Res Lett. 17, 8 (2010).CrossRef
19.
Zurück zum Zitat P.F. Wang, Y.F. Gu, L. Miao, J.H. Zhou, H. Su, A.Y. Wei, X.J. Mu, Y.Z. Tian, J.Q. Shi, and H.F. Cai, Co3O4 Nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustain. Mater. Technol. 20, 7 (2019). P.F. Wang, Y.F. Gu, L. Miao, J.H. Zhou, H. Su, A.Y. Wei, X.J. Mu, Y.Z. Tian, J.Q. Shi, and H.F. Cai, Co3O4 Nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustain. Mater. Technol. 20, 7 (2019).
20.
Zurück zum Zitat L. Zhan, X.S. Zhou, J. Luo, and X.M. Ning, Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode. Ceram. Int. 45, 17 (2019).CrossRef L. Zhan, X.S. Zhou, J. Luo, and X.M. Ning, Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode. Ceram. Int. 45, 17 (2019).CrossRef
21.
Zurück zum Zitat X. Ke, Y.H. Liang, L.H. Ou, H.D. Liu, Y.M. Chen, W.L. Wu, Y.F. Cheng, Z.P. Guo, Y.Q. Lai, P. Liu, and Z.C. Shi, Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 9 (2019). X. Ke, Y.H. Liang, L.H. Ou, H.D. Liu, Y.M. Chen, W.L. Wu, Y.F. Cheng, Z.P. Guo, Y.Q. Lai, P. Liu, and Z.C. Shi, Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 9 (2019).
22.
Zurück zum Zitat J. Smardzewski, T. Kamisinski, D. Dziurka, R. Mirski, A. Majewski, A. Flach, and A. Pilch, Sound absorption of wood-based materials. Appl. Acoust. 48, 10 (1996). J. Smardzewski, T. Kamisinski, D. Dziurka, R. Mirski, A. Majewski, A. Flach, and A. Pilch, Sound absorption of wood-based materials. Appl. Acoust. 48, 10 (1996).
23.
Zurück zum Zitat M. Aghazadeh, H. Forati-Rad, K. Yavari, and K. Mohammadzadeh, On-pot fabrication of binder-free composite of iron oxide grown onto porous N-Doped graphene layers with outstanding charge storage performance for supercapacitors. J. Mater. Sci. Mater. Electron. 32(10), 13156–13176 (2021).CrossRef M. Aghazadeh, H. Forati-Rad, K. Yavari, and K. Mohammadzadeh, On-pot fabrication of binder-free composite of iron oxide grown onto porous N-Doped graphene layers with outstanding charge storage performance for supercapacitors. J. Mater. Sci. Mater. Electron. 32(10), 13156–13176 (2021).CrossRef
24.
Zurück zum Zitat M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Func. Mater. 31, 10 (2021).CrossRef M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Func. Mater. 31, 10 (2021).CrossRef
25.
Zurück zum Zitat H.L. Xu, Y. Shen, H. Bi, W.F. Liang, and R.B. Yang, Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435, 6 (2012).CrossRef H.L. Xu, Y. Shen, H. Bi, W.F. Liang, and R.B. Yang, Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435, 6 (2012).CrossRef
26.
Zurück zum Zitat J. Pan, H. Guo, M. Wang, H. Yang, H. Hu, P. Liu, and H. Zhu, Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020).CrossRef J. Pan, H. Guo, M. Wang, H. Yang, H. Hu, P. Liu, and H. Zhu, Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020).CrossRef
27.
Zurück zum Zitat Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang, R.H. Yu, and J.L. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Func. Mater. 29, 9 (2019). Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang, R.H. Yu, and J.L. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Func. Mater. 29, 9 (2019).
28.
Zurück zum Zitat Y. Cheng, G.B. Ji, Z.Y. Li, H.L. Lv, W. Liu, Y. Zhao, J.M. Cao, and Y.W. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloy. Compd. 704, 7 (2017).CrossRef Y. Cheng, G.B. Ji, Z.Y. Li, H.L. Lv, W. Liu, Y. Zhao, J.M. Cao, and Y.W. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloy. Compd. 704, 7 (2017).CrossRef
29.
Zurück zum Zitat S.H. Kim, Y.G. Park, and S.S. Kim, Double-layered microwave absorbers composed of ferrite and carbon fiber composite laminates. Phys. Status Solidi 4, 4 (2007). S.H. Kim, Y.G. Park, and S.S. Kim, Double-layered microwave absorbers composed of ferrite and carbon fiber composite laminates. Phys. Status Solidi 4, 4 (2007).
30.
Zurück zum Zitat H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, and Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater. 7, 16 (2019).CrossRef H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, and Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater. 7, 16 (2019).CrossRef
31.
Zurück zum Zitat Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, and Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 10 (2016).CrossRef Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, and Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 10 (2016).CrossRef
32.
Zurück zum Zitat M.H. Xu, W. Zhong, Z.H. Wang, C. Au, and Y.W. Du, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Physica E: Low-Dimen Syst Nanostruct 52, 14–20 (2013).CrossRef M.H. Xu, W. Zhong, Z.H. Wang, C. Au, and Y.W. Du, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Physica E: Low-Dimen Syst Nanostruct 52, 14–20 (2013).CrossRef
33.
Zurück zum Zitat H. Luo, F. Chen, X. Wang, W. Dai, Y. Xiong, J. Yang, and R. Gong, A Novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 119, 1–7 (2019).CrossRef H. Luo, F. Chen, X. Wang, W. Dai, Y. Xiong, J. Yang, and R. Gong, A Novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 119, 1–7 (2019).CrossRef
34.
Zurück zum Zitat J. Dong, X. Huang, P. Muley, T. Wu, M. Barekati-Goudarzi, Z. Tang, and Q. Wu, Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Compos. Part B Eng. 184, 107640 (2020).CrossRef J. Dong, X. Huang, P. Muley, T. Wu, M. Barekati-Goudarzi, Z. Tang, and Q. Wu, Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Compos. Part B Eng. 184, 107640 (2020).CrossRef
35.
Zurück zum Zitat W. Liu, J. Tian, R. Yang, and W. Pei, Design of a type of broadband metamaterial absorber based on metal and graphene. Curr. Appl. Phys. 31, 122–131 (2021).CrossRef W. Liu, J. Tian, R. Yang, and W. Pei, Design of a type of broadband metamaterial absorber based on metal and graphene. Curr. Appl. Phys. 31, 122–131 (2021).CrossRef
36.
Zurück zum Zitat Q. Wang, F. Zhang, Y.J. Xiong, Y. Wang, X.Z. Tang, C. Jiang, I. Abrahams, and X.Z. Huang, Dual-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface[J]. J. Electron. Mater. 48, 7 (2019). Q. Wang, F. Zhang, Y.J. Xiong, Y. Wang, X.Z. Tang, C. Jiang, I. Abrahams, and X.Z. Huang, Dual-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface[J]. J. Electron. Mater. 48, 7 (2019).
37.
Zurück zum Zitat X.Q. Chen, Z. Wu, Z.L. Zhang, and Y.H. Zou, Graphene oxide aqueous solution-based metamaterial for broadband absorption. Physica E 120, 5 (2020).CrossRef X.Q. Chen, Z. Wu, Z.L. Zhang, and Y.H. Zou, Graphene oxide aqueous solution-based metamaterial for broadband absorption. Physica E 120, 5 (2020).CrossRef
38.
Zurück zum Zitat H. Mei, W.Q. Yang, X. Zhao, L. Yao, Y.T. Yao, C. Chen, and L.F. Cheng, In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater. Des. 197, 9 (2021).CrossRef H. Mei, W.Q. Yang, X. Zhao, L. Yao, Y.T. Yao, C. Chen, and L.F. Cheng, In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater. Des. 197, 9 (2021).CrossRef
39.
Zurück zum Zitat Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, and D. Fang, Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 162, 206–214 (2018).CrossRef Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, and D. Fang, Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 162, 206–214 (2018).CrossRef
40.
Zurück zum Zitat L. Lei, Z.J. Yao, J.T. Zhou, B. Wei, and H.Y. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 9 (2020).CrossRef L. Lei, Z.J. Yao, J.T. Zhou, B. Wei, and H.Y. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 9 (2020).CrossRef
41.
Zurück zum Zitat F. Zhang, Q. Wang, T. Zhou, Y. Xiong, Y. Wen, C. Jiang, and X. Huang, A Multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure. J. Alloys Compd. 814, 152300 (2020).CrossRef F. Zhang, Q. Wang, T. Zhou, Y. Xiong, Y. Wen, C. Jiang, and X. Huang, A Multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure. J. Alloys Compd. 814, 152300 (2020).CrossRef
42.
Zurück zum Zitat F. Zhang, C. Jiang, Q. Wang, Z. Zhao, Y. Wang, Z. Du, and X. Huang, A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Appl Phys Exp 13(8), 084001 (2020).CrossRef F. Zhang, C. Jiang, Q. Wang, Z. Zhao, Y. Wang, Z. Du, and X. Huang, A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Appl Phys Exp 13(8), 084001 (2020).CrossRef
Metadaten
Titel
High-Performance Microwave Absorption Properties of Pyramid-Shaped Metamaterials Based on Ni-Foam@Fe3O4
verfasst von
Guodong Han
Yudeng Wang
Junxiang Zhou
Yong Sun
Jiafu Wang
Shaobo Qu
Publikationsdatum
22.01.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 5/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10896-8

Weitere Artikel der Ausgabe 5/2024

Journal of Electronic Materials 5/2024 Zur Ausgabe

Neuer Inhalt