Skip to main content
Erschienen in: Journal of Electronic Materials 5/2024

25.01.2024 | Original Research Article

Multifunctional Terahertz Absorber Based on Graphene-VO2 Metamaterial with Linear Dichroism and Tunable Circular Dichroism

verfasst von: Zhe Chen, Haowen Tang, Zhonghua Chen, Tao Shen, Hui Zhang

Erschienen in: Journal of Electronic Materials | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes a multifunctional terahertz absorber utilizing graphene and vanadium dioxide as functional materials. By utilizing vanadium dioxide in the metallic state, the device achieves linear dichroism, with a maximum value of 0.8 at 1.75 THz, while in the insulating state, the introduction of graphene strips results in a chiral structure that achieves circular dichroism with tunable values ranging from 0 to 0.59 at 1.535 THz by regulating the graphene’s Fermi level. The physical mechanism underlying the differential absorption is explained, and the influence of the device’s structural parameters and incident angle on the performance is also investigated. This work provides a practical basis for the development of terahertz functional devices in polarization detection and near-field imaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Z.Q. He and X.J. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 9, 210–214 (2020).CrossRef Z.Q. He and X.J. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 9, 210–214 (2020).CrossRef
3.
Zurück zum Zitat X. Jiang, H. Chen, Z.Y. Li, H.K. Yuan, L.Y. Cao, Z.F. Luo, K. Zhang, Z.H. Zhang, Z.Q. Wen, L.G. Zhu, X. Zhou, G.F. Liang, D.S. Ruan, L.H. Du, L.F. Wang, and G. Chen, All-dielectric metalens for terahertz wave imaging. Opt. Express 26, 14132–14142 (2018).CrossRefPubMed X. Jiang, H. Chen, Z.Y. Li, H.K. Yuan, L.Y. Cao, Z.F. Luo, K. Zhang, Z.H. Zhang, Z.Q. Wen, L.G. Zhu, X. Zhou, G.F. Liang, D.S. Ruan, L.H. Du, L.F. Wang, and G. Chen, All-dielectric metalens for terahertz wave imaging. Opt. Express 26, 14132–14142 (2018).CrossRefPubMed
4.
Zurück zum Zitat X.J. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 6 (2013).CrossRef X.J. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 6 (2013).CrossRef
5.
Zurück zum Zitat S. Taravati and G.V. Eleftheriades, Pure and linear frequency-conversion temporal metasurface. Phys. Rev. Appl. 15, 12 (2021).CrossRef S. Taravati and G.V. Eleftheriades, Pure and linear frequency-conversion temporal metasurface. Phys. Rev. Appl. 15, 12 (2021).CrossRef
6.
Zurück zum Zitat T. Chung, H. Wang, and H. Cai, Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing. Nanotechnology 34, 402001 (2023).CrossRef T. Chung, H. Wang, and H. Cai, Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing. Nanotechnology 34, 402001 (2023).CrossRef
7.
Zurück zum Zitat Y. Cui and Y. Jiang, Dual-band tunable and strong circular dichroism in a metal-graphene hybrid zigzag metasurface. Opt. Express 30, 42614–42623 (2022).CrossRefPubMed Y. Cui and Y. Jiang, Dual-band tunable and strong circular dichroism in a metal-graphene hybrid zigzag metasurface. Opt. Express 30, 42614–42623 (2022).CrossRefPubMed
8.
Zurück zum Zitat Y. Cui, X. Wang, B. Ren, H. Jiang, and Y. Jiang, High-efficiency and tunable circular polarization selectivity in photosensitive silicon-based zigzag array metasurface. Opt. Laser Technol. 156, 108453 (2022).CrossRef Y. Cui, X. Wang, B. Ren, H. Jiang, and Y. Jiang, High-efficiency and tunable circular polarization selectivity in photosensitive silicon-based zigzag array metasurface. Opt. Laser Technol. 156, 108453 (2022).CrossRef
9.
Zurück zum Zitat N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).CrossRefPubMed N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).CrossRefPubMed
10.
Zurück zum Zitat Y. Cai, Y. Guo, Y. Zhou, X. Huang, G. Yang, and J. Zhu, Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene. Opt. Express 28, 31524–31534 (2020).CrossRefPubMed Y. Cai, Y. Guo, Y. Zhou, X. Huang, G. Yang, and J. Zhu, Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene. Opt. Express 28, 31524–31534 (2020).CrossRefPubMed
11.
Zurück zum Zitat Z. Chen, J. Chen, H. Tang, T. Shen, and H. Zhang, Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Opt. Express 30, 6778–6785 (2022).CrossRefPubMed Z. Chen, J. Chen, H. Tang, T. Shen, and H. Zhang, Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Opt. Express 30, 6778–6785 (2022).CrossRefPubMed
12.
Zurück zum Zitat Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles. Opt. Express 27, 22190–22197 (2019).CrossRefPubMed Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles. Opt. Express 27, 22190–22197 (2019).CrossRefPubMed
13.
Zurück zum Zitat X. Huang, F. Yang, B. Gao, Q. Yang, J. Wu, and W. He, Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt. Express 27, 25902–25911 (2019).CrossRefPubMed X. Huang, F. Yang, B. Gao, Q. Yang, J. Wu, and W. He, Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt. Express 27, 25902–25911 (2019).CrossRefPubMed
14.
Zurück zum Zitat K.-D. Xu, J. Li, A. Zhang, and Q. Chen, Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 28, 11482–11492 (2020).CrossRefPubMed K.-D. Xu, J. Li, A. Zhang, and Q. Chen, Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 28, 11482–11492 (2020).CrossRefPubMed
15.
Zurück zum Zitat F.Y. Li, T.T. Tang, Y.H. Mao, L. Luo, J. Li, J.X. Xiao, K.L. Liu, J. Shen, C.Y. Li, and J.Q. Yao, Metal-graphene hybrid chiral metamaterials for tunable circular dichroism. Ann. Phys. 532, 2000065 (2020).CrossRef F.Y. Li, T.T. Tang, Y.H. Mao, L. Luo, J. Li, J.X. Xiao, K.L. Liu, J. Shen, C.Y. Li, and J.Q. Yao, Metal-graphene hybrid chiral metamaterials for tunable circular dichroism. Ann. Phys. 532, 2000065 (2020).CrossRef
16.
Zurück zum Zitat B.X. Wang, G.Z. Wang, X. Zhai, and L.L. Wang, Polarization tunable terahertz metamaterial absorber. IEEE Photonics J. 7, 1–7 (2015).CrossRef B.X. Wang, G.Z. Wang, X. Zhai, and L.L. Wang, Polarization tunable terahertz metamaterial absorber. IEEE Photonics J. 7, 1–7 (2015).CrossRef
17.
Zurück zum Zitat Z. Wang, F. Cheng, T. Winsor, and Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).CrossRefPubMed Z. Wang, F. Cheng, T. Winsor, and Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).CrossRefPubMed
18.
Zurück zum Zitat J. Xu, J. Tang, M. Chen, C. Teng, S. Deng, Y. Cheng, S. Qu, and L. Yuan, Actively tunable linear and circular dichroic metamirrors based on single-layer graphene. Opt. Express 31, 381–395 (2023).CrossRefPubMed J. Xu, J. Tang, M. Chen, C. Teng, S. Deng, Y. Cheng, S. Qu, and L. Yuan, Actively tunable linear and circular dichroic metamirrors based on single-layer graphene. Opt. Express 31, 381–395 (2023).CrossRefPubMed
19.
Zurück zum Zitat L. Chen and Z. Song, Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 28, 6565–6571 (2020).CrossRefPubMed L. Chen and Z. Song, Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 28, 6565–6571 (2020).CrossRefPubMed
20.
Zurück zum Zitat X.L. Wu, Y. Zheng, Y. Luo, J.G. Zhang, Z. Yi, X.W. Wu, S.B. Cheng, W.X. Yang, Y. Yu, and P.H. Wu, A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 23, 26864–26873 (2021).CrossRefPubMed X.L. Wu, Y. Zheng, Y. Luo, J.G. Zhang, Z. Yi, X.W. Wu, S.B. Cheng, W.X. Yang, Y. Yu, and P.H. Wu, A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 23, 26864–26873 (2021).CrossRefPubMed
21.
Zurück zum Zitat Y.Q. Tong, S.Y. Wang, X.X. Song, L. Yang, J.Q. Yao, Y.X. Ye, Y.P. Ren, Y.T. Zhang, S.S. Xin, and X.D. Ren, Multi-band tunable terahertz absorber based on metamaterial. Int. J. Infrared Millim. Waves 39, 735–741 (2020). Y.Q. Tong, S.Y. Wang, X.X. Song, L. Yang, J.Q. Yao, Y.X. Ye, Y.P. Ren, Y.T. Zhang, S.S. Xin, and X.D. Ren, Multi-band tunable terahertz absorber based on metamaterial. Int. J. Infrared Millim. Waves 39, 735–741 (2020).
22.
Zurück zum Zitat T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.G. Chae, S.J. Yun, H.T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, and D.N. Basov, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008).CrossRef T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.G. Chae, S.J. Yun, H.T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, and D.N. Basov, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008).CrossRef
23.
Zurück zum Zitat L. Kang, H.G. Bao, S.D. Campbell, P.L. Werner, D.H. Werner, S.X. Wang, C.F. Cai, M.H. You, F.Y. Liu, M.H. Wu, S.Z. Li, Tunable broadband terahertz metamaterial absorbers based on VO2, in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020), pp. 729–730. L. Kang, H.G. Bao, S.D. Campbell, P.L. Werner, D.H. Werner, S.X. Wang, C.F. Cai, M.H. You, F.Y. Liu, M.H. Wu, S.Z. Li, Tunable broadband terahertz metamaterial absorbers based on VO2, in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020), pp. 729–730.
24.
Zurück zum Zitat G. Xie, Z. Shi, R. Yang, D. Liu, W. Yang, M. Cheng, D. Wang, D. Shi, and G. Zhang, Graphene edge lithography. Nano Lett. 12(9), 4642–4646 (2012).CrossRefPubMed G. Xie, Z. Shi, R. Yang, D. Liu, W. Yang, M. Cheng, D. Wang, D. Shi, and G. Zhang, Graphene edge lithography. Nano Lett. 12(9), 4642–4646 (2012).CrossRefPubMed
25.
Zurück zum Zitat M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).CrossRef M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).CrossRef
26.
Zurück zum Zitat T.T. Lv, Y.X. Li, H.F. Ma, Z. Zhu, Z.P. Li, C.Y. Guan, J.H. Shi, H. Zhang, and T.J. Cui, Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6, 23186 (2016).CrossRefPubMedPubMedCentral T.T. Lv, Y.X. Li, H.F. Ma, Z. Zhu, Z.P. Li, C.Y. Guan, J.H. Shi, H. Zhang, and T.J. Cui, Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6, 23186 (2016).CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A.A. Bernussi, Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B 29, 2373–2378 (2012).CrossRef Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A.A. Bernussi, Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B 29, 2373–2378 (2012).CrossRef
28.
Zurück zum Zitat G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, and P. Wu, Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 25, 17322–17328 (2017).CrossRefPubMed G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, and P. Wu, Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 25, 17322–17328 (2017).CrossRefPubMed
29.
Zurück zum Zitat H. Wang, H.Q. Zhou, T.H. Li, Z. Qin, C.C. Li, X. Li, Y.F. Li, J.Q. Zhang, S.B. Qu, and L.L. Huang, Tailoring circular dichroism via the Born-Kuhn model for meta-holograms. Sci. China Phys. Mech. Astron. 65, 104212 (2022).CrossRef H. Wang, H.Q. Zhou, T.H. Li, Z. Qin, C.C. Li, X. Li, Y.F. Li, J.Q. Zhang, S.B. Qu, and L.L. Huang, Tailoring circular dichroism via the Born-Kuhn model for meta-holograms. Sci. China Phys. Mech. Astron. 65, 104212 (2022).CrossRef
30.
Zurück zum Zitat J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020).CrossRef J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020).CrossRef
31.
Zurück zum Zitat S. Asgari and T. Fabritius, Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model. IEEE Access 10, 63658–63671 (2022).CrossRef S. Asgari and T. Fabritius, Graphene-based multiband chiral metamaterial absorbers comprised of square split-ring resonator arrays with different numbers of gaps, and their equivalent circuit model. IEEE Access 10, 63658–63671 (2022).CrossRef
32.
Zurück zum Zitat W.-G. Qin, W.-P. Zhang, L. Li, Y.-J. Huang, and Z.-W. Xie, Numerical simulation research of circular dichroism based on a catenary-shaped ultrathin metasurface. J. Opt. Soc. Am. B 39, 1543–1548 (2022).CrossRef W.-G. Qin, W.-P. Zhang, L. Li, Y.-J. Huang, and Z.-W. Xie, Numerical simulation research of circular dichroism based on a catenary-shaped ultrathin metasurface. J. Opt. Soc. Am. B 39, 1543–1548 (2022).CrossRef
33.
Zurück zum Zitat J. Li, C. Zheng, J. Li, H. Zhao, X. Hao, H. Xu, Z. Yue, Y. Zhang, and J. Yao, Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces. Opt. Express 29, 3284–3295 (2021).CrossRefPubMed J. Li, C. Zheng, J. Li, H. Zhao, X. Hao, H. Xu, Z. Yue, Y. Zhang, and J. Yao, Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces. Opt. Express 29, 3284–3295 (2021).CrossRefPubMed
Metadaten
Titel
Multifunctional Terahertz Absorber Based on Graphene-VO2 Metamaterial with Linear Dichroism and Tunable Circular Dichroism
verfasst von
Zhe Chen
Haowen Tang
Zhonghua Chen
Tao Shen
Hui Zhang
Publikationsdatum
25.01.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 5/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10914-3

Weitere Artikel der Ausgabe 5/2024

Journal of Electronic Materials 5/2024 Zur Ausgabe

Neuer Inhalt