Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

13-03-2024 | Original Research Article

Effect of Zr/Ti Ratio on the Structure and Electrical Properties of 0.7PbZrxTi1−xO3-0.3Pb(Zn1/3Nb2/3)O3 Piezoelectric Ceramics

Authors: Cong Yang, Jianzhou Du, Yuansheng Chen, Yunping Li, Jingyi Yan, Luming Wang, Kongjun Zhu

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ternary system piezoelectric ceramics 0.7PbZrxTi1−xO3-0.3Pb(Zn1/3Nb2/3)O3 (abbreviated as 0.7PZTx-0.3PZN) were prepared by a traditional solid-phase process. With the increase in Zr content, the electrical properties of the ceramics were significantly improved, and this result could be attributed to the change in the ceramic phase structure. The relationship between the change in Zr content and the ceramic phase structure and properties was investigated in detail by component modulation. X-ray diffraction (XRD) analyses showed that the phase structure of the ceramics undergoes a transition from the coexistence of tetragonal (T) and rhombohedral (R) phases to the predominance of rhombohedral (R) phases as the Zr content x increases. The phase structure of the ceramics at x = 0.49 is closer to the morphotropic phase boundary (MPB), with about 32% of the T-phase and 68% of the R-phase, and possesses good electrical properties: d33 = 483 pC/N, kp = 0.69, εr = 2171.7, tanδ = 0.016, Tc = 292.5°C, Pr = 35.9 μC/cm2, Ec = 7.7 kV/mm. Constructing the MPB of 0.7PZT-0.3PZN piezoelectric ceramics by varying the Zr content can be effective in improving the electrical properties and understanding more broadly how the change in Zr/Ti composition affects the piezoelectric behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Lu, H. Cui, G. Lu, L. Jiang, R. Hensleigh, Y. Zeng, A. Rayes, M.K. Panduranga, M. Acharya, Z. Wang, A. Irimia, F. Wu, G.P. Carman, J.M. Morales, S. Putterman, L.W. Martin, Q. Zhou, and X. Zheng, 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat. Commun. 14(1), 2418 (2023).CrossRefPubMedPubMedCentral H. Lu, H. Cui, G. Lu, L. Jiang, R. Hensleigh, Y. Zeng, A. Rayes, M.K. Panduranga, M. Acharya, Z. Wang, A. Irimia, F. Wu, G.P. Carman, J.M. Morales, S. Putterman, L.W. Martin, Q. Zhou, and X. Zheng, 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat. Commun. 14(1), 2418 (2023).CrossRefPubMedPubMedCentral
2.
go back to reference D. Zhu, Z. Lai, and Z. Wang, Freeze–thaw process of soil between two piles as monitored by piezoelectric ceramic sensor. Sci. Rep. 13(1), 5706 (2023).CrossRefPubMedPubMedCentral D. Zhu, Z. Lai, and Z. Wang, Freeze–thaw process of soil between two piles as monitored by piezoelectric ceramic sensor. Sci. Rep. 13(1), 5706 (2023).CrossRefPubMedPubMedCentral
3.
go back to reference X. Lin, X. Zhang, X. Fei, C. Wang, H. Liu, and S. Huang, Flexible three-dimensional interconnected PZT skeleton based piezoelectric nanogenerator for energy harvesting. Ceram. Int. 49(16), 27526–27534 (2023).CrossRef X. Lin, X. Zhang, X. Fei, C. Wang, H. Liu, and S. Huang, Flexible three-dimensional interconnected PZT skeleton based piezoelectric nanogenerator for energy harvesting. Ceram. Int. 49(16), 27526–27534 (2023).CrossRef
4.
go back to reference Q. Chi, L. Xu, C. Zhang, Y. Zhang, Y. Zhang, C. Tang, and T. Zhang, Enhancing the high-temperature energy storage performance of PEI dielectric film through deposition of high-dielectric PZT coating layer. Ceram. Int. 49(16), 26246–26255 (2023).CrossRef Q. Chi, L. Xu, C. Zhang, Y. Zhang, Y. Zhang, C. Tang, and T. Zhang, Enhancing the high-temperature energy storage performance of PEI dielectric film through deposition of high-dielectric PZT coating layer. Ceram. Int. 49(16), 26246–26255 (2023).CrossRef
5.
go back to reference C. Chen, R. Liang, Z. Zhou, W. Zhang, and X. Dong, Enhanced bipolar fatigue resistance in PMN–PZT ceramics prepared by spark plasma sintering. Ceram. Int. 44(4), 3563–3570 (2018).CrossRef C. Chen, R. Liang, Z. Zhou, W. Zhang, and X. Dong, Enhanced bipolar fatigue resistance in PMN–PZT ceramics prepared by spark plasma sintering. Ceram. Int. 44(4), 3563–3570 (2018).CrossRef
6.
go back to reference Q. Guo, F. Li, F. Xia, X. Gao, P. Wang, H. Hao, H. Sun, H. Liu, and S. Zhang, High-Performance Sm-Doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-Based Piezoceramics. ACS Appl. Mater. Interfaces 11(46), 43359–43367 (2019).CrossRefPubMed Q. Guo, F. Li, F. Xia, X. Gao, P. Wang, H. Hao, H. Sun, H. Liu, and S. Zhang, High-Performance Sm-Doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-Based Piezoceramics. ACS Appl. Mater. Interfaces 11(46), 43359–43367 (2019).CrossRefPubMed
7.
go back to reference K. Wen, J. Qiu, H. Ji, K. Zhu, J. Liu, J. Wang, J. Du, and F. Zhu, Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3-(1−x)Pb(Zr0.4Ti0.6)O3 ceramics. J. Mater. Sci. Mater. Electron. 25(7), 3003–3009 (2014).CrossRef K. Wen, J. Qiu, H. Ji, K. Zhu, J. Liu, J. Wang, J. Du, and F. Zhu, Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3-(1−x)Pb(Zr0.4Ti0.6)O3 ceramics. J. Mater. Sci. Mater. Electron. 25(7), 3003–3009 (2014).CrossRef
8.
go back to reference J. Yan, Y. Hou, X. Yu, M. Zheng, and M. Zhu, Large enhancement of transduction coefficient in PZN–PZT energy harvesting system through introducing low-εr PIN relaxor. J. Eur. Ceram. Soc. 39(8), 2666–2672 (2019).CrossRef J. Yan, Y. Hou, X. Yu, M. Zheng, and M. Zhu, Large enhancement of transduction coefficient in PZN–PZT energy harvesting system through introducing low-εr PIN relaxor. J. Eur. Ceram. Soc. 39(8), 2666–2672 (2019).CrossRef
9.
go back to reference H. Chen, T. Pu, Y. Luo, S. Fan, Q. Chen, H. Liu, and J. Zhu, Enhancement of piezoelectric properties in low-temperature sintering PZN–PZT ceramics by Sr2+ substitution. J. Electron. Mater. 51(3), 1261–1271 (2022).CrossRef H. Chen, T. Pu, Y. Luo, S. Fan, Q. Chen, H. Liu, and J. Zhu, Enhancement of piezoelectric properties in low-temperature sintering PZN–PZT ceramics by Sr2+ substitution. J. Electron. Mater. 51(3), 1261–1271 (2022).CrossRef
10.
go back to reference G.F. Fan, M.B. Shi, W.Z. Lu, Y.Q. Wang, and F. Liang, Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN–PZT ceramics. J. Eur. Ceram. Soc. 34(1), 23–28 (2014).CrossRef G.F. Fan, M.B. Shi, W.Z. Lu, Y.Q. Wang, and F. Liang, Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN–PZT ceramics. J. Eur. Ceram. Soc. 34(1), 23–28 (2014).CrossRef
11.
go back to reference L. Bian, X. Qi, K. Li, J. Fan, Z. Li, E. Sun, B. Yang, S. Dong, and W. Cao, High-performance Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with the triple point composition. J. Eur. Ceram. Soc. 41(14), 6983–6990 (2021).CrossRef L. Bian, X. Qi, K. Li, J. Fan, Z. Li, E. Sun, B. Yang, S. Dong, and W. Cao, High-performance Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with the triple point composition. J. Eur. Ceram. Soc. 41(14), 6983–6990 (2021).CrossRef
12.
go back to reference F. Guo, S. Zhang, W. Long, P. Fang, X. Li, and Z. Xi, SnO2 modified PNN–PZT ceramics with ultra-high piezoelectric and dielectric properties. Ceram. Int. 48(16), 23241–23248 (2022).CrossRef F. Guo, S. Zhang, W. Long, P. Fang, X. Li, and Z. Xi, SnO2 modified PNN–PZT ceramics with ultra-high piezoelectric and dielectric properties. Ceram. Int. 48(16), 23241–23248 (2022).CrossRef
13.
go back to reference T. Pu, H. Chen, J. Xing, Y. Luo, S. Fan, H. Liu, Q. Chen, and J. Zhu, High piezoelectricity of low-temperature sintered Li2CO3-added PNN–PZT relaxor ferroelectrics. J. Mater. Sci. Mater. Electron. 33(8), 4819–4830 (2022).CrossRef T. Pu, H. Chen, J. Xing, Y. Luo, S. Fan, H. Liu, Q. Chen, and J. Zhu, High piezoelectricity of low-temperature sintered Li2CO3-added PNN–PZT relaxor ferroelectrics. J. Mater. Sci. Mater. Electron. 33(8), 4819–4830 (2022).CrossRef
14.
go back to reference G.G. Peng, D.Y. Zheng, C. Cheng, J. Zhang, and H. Zhang, Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN–PZT ceramics. J. Alloy. Compd. 693, 1250–1256 (2017).CrossRef G.G. Peng, D.Y. Zheng, C. Cheng, J. Zhang, and H. Zhang, Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN–PZT ceramics. J. Alloy. Compd. 693, 1250–1256 (2017).CrossRef
15.
go back to reference A. Kumar, A.K. Kalyani, R. Ranjan, K.C.J. Raju, J. Ryu, N. Park, and A.R. James, Evidence of monoclinic phase and its variation with temperature at morphotropic phase boundary of PLZT ceramics. J. Alloy. Compd. 816, 152613 (2020).CrossRef A. Kumar, A.K. Kalyani, R. Ranjan, K.C.J. Raju, J. Ryu, N. Park, and A.R. James, Evidence of monoclinic phase and its variation with temperature at morphotropic phase boundary of PLZT ceramics. J. Alloy. Compd. 816, 152613 (2020).CrossRef
16.
go back to reference H. Wang, F. Zhang, Y. Chen, C. Huang, X. Wang, X. Wu, Y. Chen, Y. Xu, S. Guan, J. Zhu, Q. Chen, and J. Xing, Giant piezoelectric coefficient of PNN–PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram. Int. 47(9), 12284–12291 (2021).CrossRef H. Wang, F. Zhang, Y. Chen, C. Huang, X. Wang, X. Wu, Y. Chen, Y. Xu, S. Guan, J. Zhu, Q. Chen, and J. Xing, Giant piezoelectric coefficient of PNN–PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram. Int. 47(9), 12284–12291 (2021).CrossRef
17.
go back to reference V. Tiwari, and G. Srivastava, The effect of Li2CO3 addition on the structural, dielectric and piezoelectric properties of PZT ceramics. Ceram. Int. 41(2), 2774–2778 (2015).CrossRef V. Tiwari, and G. Srivastava, The effect of Li2CO3 addition on the structural, dielectric and piezoelectric properties of PZT ceramics. Ceram. Int. 41(2), 2774–2778 (2015).CrossRef
18.
go back to reference H.L. Wang, F.F. Zhang, Y. Chen, C.T. Huang, X.Y. Wang, X.J. Xu, Y.L. Chen, Y.G. Xu, S.Y. Guan, J.G. Zhu, Q. Chen, and J. Xing, Giant piezoelectric coefficient of PNN–PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram. Int. 47(9), 12284–12291 (2021).CrossRef H.L. Wang, F.F. Zhang, Y. Chen, C.T. Huang, X.Y. Wang, X.J. Xu, Y.L. Chen, Y.G. Xu, S.Y. Guan, J.G. Zhu, Q. Chen, and J. Xing, Giant piezoelectric coefficient of PNN–PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram. Int. 47(9), 12284–12291 (2021).CrossRef
19.
go back to reference Y.X. Guo, W.B. Ma, and F. Zhang, The effect of PSN content on MPB of 0.3Pb(Ni1/3Nb2/3)O3-0.7Pb(Zr1−xTx)O3 system. J. Mater. Sci. Mater. Electron. 27, 1520–1527 (2016).CrossRef Y.X. Guo, W.B. Ma, and F. Zhang, The effect of PSN content on MPB of 0.3Pb(Ni1/3Nb2/3)O3-0.7Pb(Zr1xTx)O3 system. J. Mater. Sci. Mater. Electron. 27, 1520–1527 (2016).CrossRef
20.
go back to reference J.B. Zhang, H. Liu, S.D. Sun, Y. Liu, Y.Y. Zhang, H. Qi, S.Q. Deng, and J. Chen, Crystal structure and actuation mechanisms in morphotropic phase boundary Pb(Zn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 piezoelectric ceramic. J. Am. Ceram. Soc. 104(6), 2621–2627 (2021).CrossRef J.B. Zhang, H. Liu, S.D. Sun, Y. Liu, Y.Y. Zhang, H. Qi, S.Q. Deng, and J. Chen, Crystal structure and actuation mechanisms in morphotropic phase boundary Pb(Zn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 piezoelectric ceramic. J. Am. Ceram. Soc. 104(6), 2621–2627 (2021).CrossRef
21.
go back to reference H.L. Li, Y. Zhang, J.J. Zhou, X.W. Zhang, H. Liu, and J.Z. Fang, Phase structure and electrical properties of xPZN-(1−x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 41(3), 4822–4828 (2015).CrossRef H.L. Li, Y. Zhang, J.J. Zhou, X.W. Zhang, H. Liu, and J.Z. Fang, Phase structure and electrical properties of xPZN-(1−x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 41(3), 4822–4828 (2015).CrossRef
22.
go back to reference N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, and D.P. Cann, Dielectric properties and morphotropic phase boundaries in the xPb(Zn1/3Nb2/3)O3−(1−x)Pb(Zr0.5Ti0.5)O3 pseudo-binary system. J. Electroceram. 16(2), 141–149 (2006).CrossRef N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, and D.P. Cann, Dielectric properties and morphotropic phase boundaries in the xPb(Zn1/3Nb2/3)O3−(1−x)Pb(Zr0.5Ti0.5)O3 pseudo-binary system. J. Electroceram. 16(2), 141–149 (2006).CrossRef
23.
go back to reference A.M. Geetika, Umarji, The influence of Zr/Ti content on the morphotropic phase boundary in the PZT–PZN system. Mater. Sci. Eng. B 167(3), 171–176 (2010).CrossRef A.M. Geetika, Umarji, The influence of Zr/Ti content on the morphotropic phase boundary in the PZT–PZN system. Mater. Sci. Eng. B 167(3), 171–176 (2010).CrossRef
24.
go back to reference N. Wang, Q. Sun, W. Ma, Y. Zhang, and H. Liu, Investigation of La-doped 0.25Pb(Zn1/3Nb2/3)O3–0.75Pb(ZrxTi1−x)O3 ceramics near morphotropic phase boundary. J. Electroceram. 28(1), 15–19 (2012).CrossRef N. Wang, Q. Sun, W. Ma, Y. Zhang, and H. Liu, Investigation of La-doped 0.25Pb(Zn1/3Nb2/3)O3–0.75Pb(ZrxTi1x)O3 ceramics near morphotropic phase boundary. J. Electroceram. 28(1), 15–19 (2012).CrossRef
25.
go back to reference Z.Q. Zeng, Q.C. Wu, M.M. Hao, W.Z. Lu, G.F. Fan, M.Y. Chi, and M.Y. Ding, Impedance spectroscopy and piezoelectric property of LiF-doped PZN–PZT low-temperature sintering piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 29, 8279–8286 (2018).CrossRef Z.Q. Zeng, Q.C. Wu, M.M. Hao, W.Z. Lu, G.F. Fan, M.Y. Chi, and M.Y. Ding, Impedance spectroscopy and piezoelectric property of LiF-doped PZN–PZT low-temperature sintering piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 29, 8279–8286 (2018).CrossRef
26.
go back to reference M. Zheng, Y. Hou, M. Zhu, M. Zhang, and H. Yan, Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics. J. Eur. Ceram. Soc. 34(10), 2275–2283 (2014).CrossRef M. Zheng, Y. Hou, M. Zhu, M. Zhang, and H. Yan, Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics. J. Eur. Ceram. Soc. 34(10), 2275–2283 (2014).CrossRef
27.
go back to reference H. Liu, J. Chen, L. Fan, Y. Ren, Z. Pan, K.V. Lalitha, J. Rödel, and X. Xing, Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys. Rev. Lett. 119, 017601 (2017).CrossRefPubMed H. Liu, J. Chen, L. Fan, Y. Ren, Z. Pan, K.V. Lalitha, J. Rödel, and X. Xing, Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys. Rev. Lett. 119, 017601 (2017).CrossRefPubMed
28.
go back to reference M. Promsawat, A. Watcharapasorn, Z.G. Ye, and S. Jiansirisomboon, Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification. J. Am. Ceram. Soc. 98(3), 848–854 (2015).CrossRef M. Promsawat, A. Watcharapasorn, Z.G. Ye, and S. Jiansirisomboon, Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification. J. Am. Ceram. Soc. 98(3), 848–854 (2015).CrossRef
29.
go back to reference Y. Chen, H. Zhou, S. Wang, Q. Chen, Q. Wang, and J. Zhu, Diffused phase transition, ionic conduction mechanisms and electric-field dependent ferroelectricity of Nb/Ce co-doped Pb(Zr0.52Ti0.48)O3 ceramics. J. Alloys Compd. 854, 155500 (2021).CrossRef Y. Chen, H. Zhou, S. Wang, Q. Chen, Q. Wang, and J. Zhu, Diffused phase transition, ionic conduction mechanisms and electric-field dependent ferroelectricity of Nb/Ce co-doped Pb(Zr0.52Ti0.48)O3 ceramics. J. Alloys Compd. 854, 155500 (2021).CrossRef
30.
go back to reference H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J. Zhu, P. Yu, D. Xiao, C. Wang, and X. Wang, Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram. Int. 41(9), 11359–11364 (2015).CrossRef H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J. Zhu, P. Yu, D. Xiao, C. Wang, and X. Wang, Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram. Int. 41(9), 11359–11364 (2015).CrossRef
31.
go back to reference L. Tang, X. Zhou, M. Habib, J. Zou, X. Yuan, Y. Zhang, and D. Zhang, Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. Ceram. Int. 49(19), 31965–31974 (2023).CrossRef L. Tang, X. Zhou, M. Habib, J. Zou, X. Yuan, Y. Zhang, and D. Zhang, Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. Ceram. Int. 49(19), 31965–31974 (2023).CrossRef
Metadata
Title
Effect of Zr/Ti Ratio on the Structure and Electrical Properties of 0.7PbZrxTi1−xO3-0.3Pb(Zn1/3Nb2/3)O3 Piezoelectric Ceramics
Authors
Cong Yang
Jianzhou Du
Yuansheng Chen
Yunping Li
Jingyi Yan
Luming Wang
Kongjun Zhu
Publication date
13-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-11003-1

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue