Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Micro- and Nanotechnologies to Probe Brain Mechanobiology

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, I discuss the limitations of conventional tools for probing the mechano-biology of the brain and summarize published literature on micro- and nanotechnologies to investigate neural mechanobiology with greater spatiotemporal resolution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004)CrossRef McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004)CrossRef
2.
go back to reference Wirtz, D., Konstantopoulos, K., Searson, P.C.: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer. 11, 512–522 (2011)CrossRef Wirtz, D., Konstantopoulos, K., Searson, P.C.: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer. 11, 512–522 (2011)CrossRef
3.
go back to reference Warkiani, M.E., Tay, A.K.P., Khoo, B.L., Xiaofeng, X., Han, J., Lim, C.T.: Malaria detection using inertial microfluidics. Lab Chip. 15, 1101–1109 (2015)CrossRef Warkiani, M.E., Tay, A.K.P., Khoo, B.L., Xiaofeng, X., Han, J., Lim, C.T.: Malaria detection using inertial microfluidics. Lab Chip. 15, 1101–1109 (2015)CrossRef
4.
5.
go back to reference Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef
6.
go back to reference Brouzés, E., Farge, E.: Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr. Opin. Genet. Dev. 14, 367–374 (2004)CrossRef Brouzés, E., Farge, E.: Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr. Opin. Genet. Dev. 14, 367–374 (2004)CrossRef
7.
go back to reference Siechen, S., Yang, S., Chiba, A., Saif, T.: Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. U. S. A. 106, 12611–12616 (2009)CrossRef Siechen, S., Yang, S., Chiba, A., Saif, T.: Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. U. S. A. 106, 12611–12616 (2009)CrossRef
8.
go back to reference Lamoureux, P., Ruthel, G., Buxbaum, R.E., Heidemann, S.R.: Mechanical tension can specify axonal fate in hippocampal neurons. J. Cell Biol. 159, 499–508 (2002)CrossRef Lamoureux, P., Ruthel, G., Buxbaum, R.E., Heidemann, S.R.: Mechanical tension can specify axonal fate in hippocampal neurons. J. Cell Biol. 159, 499–508 (2002)CrossRef
9.
go back to reference Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophys. J. 96, 1661–1670 (2009)CrossRef Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophys. J. 96, 1661–1670 (2009)CrossRef
10.
go back to reference Zhang, Y., Zhou, Y., Yu, C., Lin, L., Li, C., Jiang, T.: Reduced cortical folding in mental retardation. AJNR Am. J. Neuroradiol. 31, 1063–1067 (2010)CrossRef Zhang, Y., Zhou, Y., Yu, C., Lin, L., Li, C., Jiang, T.: Reduced cortical folding in mental retardation. AJNR Am. J. Neuroradiol. 31, 1063–1067 (2010)CrossRef
11.
go back to reference Sharp, D.J., Scott, G., Leech, R.: Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014)CrossRef Sharp, D.J., Scott, G., Leech, R.: Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014)CrossRef
12.
go back to reference Xiong, Y., Aih, C.L., Suter, D.M., Lee, G.U.: Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys. J. 96, 5060–5072 (2009)CrossRef Xiong, Y., Aih, C.L., Suter, D.M., Lee, G.U.: Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys. J. 96, 5060–5072 (2009)CrossRef
13.
go back to reference Sappington, R.M., Sidorova, T., Long, D.J., Calkins, D.J.: TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Investig. Ophthalmol. Vis. Sci. 50, 717–728 (2009)CrossRef Sappington, R.M., Sidorova, T., Long, D.J., Calkins, D.J.: TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Investig. Ophthalmol. Vis. Sci. 50, 717–728 (2009)CrossRef
14.
go back to reference Kilinc, D., Blasiak, A., Lee, G.: Microtechnologies for studying the role of mechanics in axon growth and guidance. Front. Cell. Neurosci. 9, 282 (2015)CrossRef Kilinc, D., Blasiak, A., Lee, G.: Microtechnologies for studying the role of mechanics in axon growth and guidance. Front. Cell. Neurosci. 9, 282 (2015)CrossRef
15.
go back to reference Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., Martinoia, S.: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip. 9, 2644–2651 (2009)CrossRef Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., Martinoia, S.: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip. 9, 2644–2651 (2009)CrossRef
16.
go back to reference Huang, Y., Williams, J.C., Johnson, S.M.: Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip. 12, 2103 (2012)CrossRef Huang, Y., Williams, J.C., Johnson, S.M.: Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip. 12, 2103 (2012)CrossRef
17.
go back to reference Kurth, F., Eyer, K., Franco-Obregón, A., Dittrich, P.S.: A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Curr. Opin. Chem. Biol. 16, 400–408 (2012)CrossRef Kurth, F., Eyer, K., Franco-Obregón, A., Dittrich, P.S.: A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Curr. Opin. Chem. Biol. 16, 400–408 (2012)CrossRef
18.
go back to reference Rambani, K., Vukasinovic, J., Glezer, A., Potter, S.M.: Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. J. Neurosci. Methods. 180, 243–254 (2009)CrossRef Rambani, K., Vukasinovic, J., Glezer, A., Potter, S.M.: Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. J. Neurosci. Methods. 180, 243–254 (2009)CrossRef
19.
go back to reference Delmas, P., Hao, J., Rodat-Despoix, L.: Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011)CrossRef Delmas, P., Hao, J., Rodat-Despoix, L.: Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011)CrossRef
20.
go back to reference Galkin, V.E., Orlova, A., Egelman, E.H.: Actin filaments as tension sensors. Curr. Biol. 22, R96–R101 (2012)CrossRef Galkin, V.E., Orlova, A., Egelman, E.H.: Actin filaments as tension sensors. Curr. Biol. 22, R96–R101 (2012)CrossRef
21.
go back to reference Smith, S.J.: Neuronal cytomechanics: the actin-based motility of growth cones. Science. 242, 708–715 (1988)CrossRef Smith, S.J.: Neuronal cytomechanics: the actin-based motility of growth cones. Science. 242, 708–715 (1988)CrossRef
22.
go back to reference Matus, A.: Actin-based plasticity in dendritic spines. Science. 290, 754–758 (2000)CrossRef Matus, A.: Actin-based plasticity in dendritic spines. Science. 290, 754–758 (2000)CrossRef
23.
go back to reference Hu, X., Viesselmann, C., Nam, S., Merriam, E., Dent, E.W.: Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094–13105 (2008)CrossRef Hu, X., Viesselmann, C., Nam, S., Merriam, E., Dent, E.W.: Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094–13105 (2008)CrossRef
24.
go back to reference Brown, H.G., Hoh, J.H.: Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry. 36, 15035–15040 (1997)CrossRef Brown, H.G., Hoh, J.H.: Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry. 36, 15035–15040 (1997)CrossRef
25.
go back to reference Perrot, R., Eyer, J.: Neuronal intermediate filaments and neurodegenerative disorders. Brain Res. Bull. 80, 282–295 (2009)CrossRef Perrot, R., Eyer, J.: Neuronal intermediate filaments and neurodegenerative disorders. Brain Res. Bull. 80, 282–295 (2009)CrossRef
26.
go back to reference Dityatev, A., Schachner, M., Sonderegger, P.: The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010)CrossRef Dityatev, A., Schachner, M., Sonderegger, P.: The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010)CrossRef
27.
go back to reference Tsunozaki, M., Bautista, D.M.: Mammalian somatosensory mechanotransduction. Curr. Opin. Neurobiol. 19, 362–369 (2009)CrossRef Tsunozaki, M., Bautista, D.M.: Mammalian somatosensory mechanotransduction. Curr. Opin. Neurobiol. 19, 362–369 (2009)CrossRef
28.
go back to reference Hu, J., Lewin, G.R.: Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. 577, 28 (2006)CrossRef Hu, J., Lewin, G.R.: Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. 577, 28 (2006)CrossRef
29.
go back to reference Hamill, O.P., McBride, D.W.: Rapid adaptation of single mechanosensitive channels in xenopus oocytes. Proc. Natl. Acad. Sci. U. S. A. 89, 7462–7466 (1992)CrossRef Hamill, O.P., McBride, D.W.: Rapid adaptation of single mechanosensitive channels in xenopus oocytes. Proc. Natl. Acad. Sci. U. S. A. 89, 7462–7466 (1992)CrossRef
30.
go back to reference McCarter, G.C., Reichling, D.B., Levine, J.D.: Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999)CrossRef McCarter, G.C., Reichling, D.B., Levine, J.D.: Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999)CrossRef
31.
go back to reference Sachs, F.: Stretch-activated ion channels: what are they? Physiology (Bethesda). 25, 50–56 (2010)CrossRef Sachs, F.: Stretch-activated ion channels: what are they? Physiology (Bethesda). 25, 50–56 (2010)CrossRef
32.
go back to reference Liu, M., Song, W., Li, P., Huang, Y., Gong, X., Zhou, G., Jia, X., Zheng, L., Fan, Y.: Galanin protects against nerve injury after shear stress in primary cultured rat cortical neurons. PLoS One. 8, e63473 (2013)CrossRef Liu, M., Song, W., Li, P., Huang, Y., Gong, X., Zhou, G., Jia, X., Zheng, L., Fan, Y.: Galanin protects against nerve injury after shear stress in primary cultured rat cortical neurons. PLoS One. 8, e63473 (2013)CrossRef
33.
go back to reference Bhattacharya, M.R.C., Bautista, D.M., Wu, K., Haeberle, H., Lumpkin, E.A., Julius, D.: Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 20015–20020 (2008)CrossRef Bhattacharya, M.R.C., Bautista, D.M., Wu, K., Haeberle, H., Lumpkin, E.A., Julius, D.: Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 20015–20020 (2008)CrossRef
34.
go back to reference Dertinger, S.K.W., Jiang, X., Li, Z., Murthy, V.N., Whitesides, G.M.: Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. U. S. A. 99, 12542–12547 (2002)CrossRef Dertinger, S.K.W., Jiang, X., Li, Z., Murthy, V.N., Whitesides, G.M.: Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. U. S. A. 99, 12542–12547 (2002)CrossRef
35.
go back to reference Millet, L.J., Stewart, M.E., Nuzzo, R.G., Gillette, M.U.: Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip. 10, 1525–1535 (2010)CrossRef Millet, L.J., Stewart, M.E., Nuzzo, R.G., Gillette, M.U.: Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip. 10, 1525–1535 (2010)CrossRef
36.
go back to reference Sundararaghavan, H.G., Monteiro, G.a., Firestein, B.L., Shreiber, D.I.: Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102, 632–643 (2009)CrossRef Sundararaghavan, H.G., Monteiro, G.a., Firestein, B.L., Shreiber, D.I.: Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102, 632–643 (2009)CrossRef
37.
go back to reference Rajnicek, A., Britland, S., McCaig, C.: Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci. 110(Pt 2), 2905–2913 (1997) Rajnicek, A., Britland, S., McCaig, C.: Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci. 110(Pt 2), 2905–2913 (1997)
38.
go back to reference Kaehr, B., Allen, R., Javier, D.J., Currie, J., Shear, J.B.: Guiding neuronal development with in situ microfabrication. Proc. Natl. Acad. Sci. U. S. A. 101, 16104–16108 (2004)CrossRef Kaehr, B., Allen, R., Javier, D.J., Currie, J., Shear, J.B.: Guiding neuronal development with in situ microfabrication. Proc. Natl. Acad. Sci. U. S. A. 101, 16104–16108 (2004)CrossRef
39.
go back to reference Parpura, V., Haydon, P.G., Henderson, E.: Three-dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci. 104(Pt 2), 427–432 (1993) Parpura, V., Haydon, P.G., Henderson, E.: Three-dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci. 104(Pt 2), 427–432 (1993)
40.
go back to reference Gopal, A., Luo, Z., Lee, J.Y., Kumar, K., Li, B., Hoshino, K., Schmidt, C., Ho, P.S., Zhang, X.: Nano-Opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation. Biomed. Microdevices. 10, 611–622 (2008)CrossRef Gopal, A., Luo, Z., Lee, J.Y., Kumar, K., Li, B., Hoshino, K., Schmidt, C., Ho, P.S., Zhang, X.: Nano-Opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation. Biomed. Microdevices. 10, 611–622 (2008)CrossRef
41.
go back to reference Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2, 599–605 (2005)CrossRef Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2, 599–605 (2005)CrossRef
42.
go back to reference Taylor, A.M., Rhee, S.W., Tu, C.H., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: Microfluidic multicompartment device for neuroscience research. Langmuir. 19, 1551–1556 (2003)CrossRef Taylor, A.M., Rhee, S.W., Tu, C.H., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: Microfluidic multicompartment device for neuroscience research. Langmuir. 19, 1551–1556 (2003)CrossRef
43.
go back to reference Hellman, A.N., Vahidi, B., Kim, H.J., Mismar, W., Steward, O., Jeon, N.L., Venugopalan, V.: Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab Chip. 10, 2083–2092 (2010)CrossRef Hellman, A.N., Vahidi, B., Kim, H.J., Mismar, W., Steward, O., Jeon, N.L., Venugopalan, V.: Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab Chip. 10, 2083–2092 (2010)CrossRef
44.
go back to reference Kilinc, D., Blasiak, A., O’Mahony, J.J., Lee, G.U.: Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep. 4, 7128 (2014)CrossRef Kilinc, D., Blasiak, A., O’Mahony, J.J., Lee, G.U.: Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep. 4, 7128 (2014)CrossRef
45.
go back to reference Gu, L., Black, B., Ordonez, S., Mondal, A., Jain, A., Mohanty, S.: Microfluidic control of axonal guidance. Sci Rep. 4, 6457 (2014)CrossRef Gu, L., Black, B., Ordonez, S., Mondal, A., Jain, A., Mohanty, S.: Microfluidic control of axonal guidance. Sci Rep. 4, 6457 (2014)CrossRef
46.
go back to reference Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9, 7678–7689 (2015)CrossRef Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9, 7678–7689 (2015)CrossRef
47.
go back to reference Tay, A., Kunze, A., Murray, C., Di Carlo, D.: Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano. 10, 2331–2341 (2016)CrossRef Tay, A., Kunze, A., Murray, C., Di Carlo, D.: Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano. 10, 2331–2341 (2016)CrossRef
48.
go back to reference Dotti, C.G., Sullivan, C.A., Banker, G.A.: The establishment of polarity by hippocampal neurons in culture. J Neurosci. 8, 1454–1468 (1988) Dotti, C.G., Sullivan, C.A., Banker, G.A.: The establishment of polarity by hippocampal neurons in culture. J Neurosci. 8, 1454–1468 (1988)
49.
go back to reference Hosmane, S., Fournier, A., Wright, R., Rajbhandari, L., Siddique, R., Yang, I.H., Ramesh, K.T., Venkatesan, A., Thakor, N.: Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip. 11, 3888 (2011)CrossRef Hosmane, S., Fournier, A., Wright, R., Rajbhandari, L., Siddique, R., Yang, I.H., Ramesh, K.T., Venkatesan, A., Thakor, N.: Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip. 11, 3888 (2011)CrossRef
50.
go back to reference Yang, Y., Gozen, O., Watkins, A., Lorenzini, I., Lepore, A., Gao, Y., Vidensky, S., Brennan, J., Poulsen, D., Won Park, J., et al.: Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron. 61, 880–894 (2009)CrossRef Yang, Y., Gozen, O., Watkins, A., Lorenzini, I., Lepore, A., Gao, Y., Vidensky, S., Brennan, J., Poulsen, D., Won Park, J., et al.: Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron. 61, 880–894 (2009)CrossRef
51.
go back to reference Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab Chip. 8, 198–220 (2008)CrossRef Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab Chip. 8, 198–220 (2008)CrossRef
52.
go back to reference Campàs, O., Mammoto, T., Hasso, S., Sperling, R.A., O’Connell, D., Bischof, A.G., Maas, R., Weitz, D.A., Mahadevan, L., Ingber, D.E.: Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods. 11, 183–189 (2014)CrossRef Campàs, O., Mammoto, T., Hasso, S., Sperling, R.A., O’Connell, D., Bischof, A.G., Maas, R., Weitz, D.A., Mahadevan, L., Ingber, D.E.: Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods. 11, 183–189 (2014)CrossRef
53.
go back to reference Corbin, E.A., Kong, F., Lim, C.T., King, W.P., Bashir, R.: Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab Chip. 15, 839–847 (2015)CrossRef Corbin, E.A., Kong, F., Lim, C.T., King, W.P., Bashir, R.: Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab Chip. 15, 839–847 (2015)CrossRef
54.
go back to reference Corbin, E.A., Millet, L.J., Keller, K.R., King, W.P., Bashir, R.: Measuring physical properties of neuronal and glial cells with resonant microsensors. Anal. Chem. 86, 4864–4872 (2014)CrossRef Corbin, E.A., Millet, L.J., Keller, K.R., King, W.P., Bashir, R.: Measuring physical properties of neuronal and glial cells with resonant microsensors. Anal. Chem. 86, 4864–4872 (2014)CrossRef
55.
go back to reference Park, K., Mehrnezhad, A., Corbin, E.A., Bashir, R.: Optomechanical measurement of the stiffness of single adherent cells. Lab Chip. 15, 3460–3464 (2015)CrossRef Park, K., Mehrnezhad, A., Corbin, E.A., Bashir, R.: Optomechanical measurement of the stiffness of single adherent cells. Lab Chip. 15, 3460–3464 (2015)CrossRef
56.
go back to reference Teixeira, A.I., Ilkhanizadeh, S., Wigenius, J.A., Duckworth, J.K., Inganäs, O., Hermanson, O.: The promotion of neuronal maturation on soft substrates. Biomaterials. 30, 4567–4572 (2009)CrossRef Teixeira, A.I., Ilkhanizadeh, S., Wigenius, J.A., Duckworth, J.K., Inganäs, O., Hermanson, O.: The promotion of neuronal maturation on soft substrates. Biomaterials. 30, 4567–4572 (2009)CrossRef
57.
go back to reference Tseng, P., Judy, J.W., Di Carlo, D.: Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods. 9, 1113–1119 (2012)CrossRef Tseng, P., Judy, J.W., Di Carlo, D.: Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods. 9, 1113–1119 (2012)CrossRef
58.
go back to reference Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9, 3664–3676 (2015)CrossRef Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9, 3664–3676 (2015)CrossRef
60.
go back to reference Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef
61.
go back to reference Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef
62.
go back to reference Ciofani, G., Danti, S., D’Alessandro, D., Ricotti, L., Moscato, S., Bertoni, G., Falqui, A., Berrettini, S., Petrini, M., Mattoli, V., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano. 4, 6267–6277 (2010)CrossRef Ciofani, G., Danti, S., D’Alessandro, D., Ricotti, L., Moscato, S., Bertoni, G., Falqui, A., Berrettini, S., Petrini, M., Mattoli, V., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano. 4, 6267–6277 (2010)CrossRef
63.
go back to reference Julius, D.: Molecular mechanisms of nociception. Nature. 413, 203–210 (2001)CrossRef Julius, D.: Molecular mechanisms of nociception. Nature. 413, 203–210 (2001)CrossRef
64.
go back to reference Gillespie, P.G., Walker, R.G.: Molecular basis of mechanosensory transduction. Nature. 413, 194–202 (2001)CrossRef Gillespie, P.G., Walker, R.G.: Molecular basis of mechanosensory transduction. Nature. 413, 194–202 (2001)CrossRef
65.
go back to reference Levina, N., Tötemeyer, S., Stokes, N.R., Louis, P., Jones, M.A., Booth, I.R.: Protection of Escherichia Coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999)CrossRef Levina, N., Tötemeyer, S., Stokes, N.R., Louis, P., Jones, M.A., Booth, I.R.: Protection of Escherichia Coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999)CrossRef
66.
go back to reference Chalfie, M.: Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009)CrossRef Chalfie, M.: Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009)CrossRef
67.
go back to reference Kaplan, W.D., Trout, W.E.: The behavior of four neurological mutants of drosophila. Genetics. 61, 399–409 (1969) Kaplan, W.D., Trout, W.E.: The behavior of four neurological mutants of drosophila. Genetics. 61, 399–409 (1969)
68.
go back to reference Ketchum, K.A., Joiner, W.J., Sellers, A.J., Kaczmarek, L.K., Goldstein, S.A.: A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature. 376, 690–695 (1995)CrossRef Ketchum, K.A., Joiner, W.J., Sellers, A.J., Kaczmarek, L.K., Goldstein, S.A.: A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature. 376, 690–695 (1995)CrossRef
69.
go back to reference Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al.: Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312, 121–127 (1984)CrossRef Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al.: Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312, 121–127 (1984)CrossRef
70.
go back to reference Nowycky, M.C., Fox, A.P., Tsien, R.W.: Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 316, 440–443 (1985)CrossRef Nowycky, M.C., Fox, A.P., Tsien, R.W.: Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 316, 440–443 (1985)CrossRef
71.
go back to reference Cosens, D.J., Manning, A.: Abnormal electroretinogram from a drosophila mutant. Nature. 224, 285–287 (1969)CrossRef Cosens, D.J., Manning, A.: Abnormal electroretinogram from a drosophila mutant. Nature. 224, 285–287 (1969)CrossRef
72.
go back to reference Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef
73.
go back to reference Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef
74.
go back to reference Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef
75.
go back to reference Becq, F.: On the discovery and development of CFTR chloride channel activators. Curr. Pharm. Des. 12, 471–484 (2006)CrossRef Becq, F.: On the discovery and development of CFTR chloride channel activators. Curr. Pharm. Des. 12, 471–484 (2006)CrossRef
76.
go back to reference Zhang, Z., Kindrat, A.N., Sharif-Naeini, R., Bourque, C.W.: Actin filaments mediate mechanical gating during osmosensory transduction in rat Supraoptic nucleus neurons. J. Neurosci. 27, 4008–4013 (2007)CrossRef Zhang, Z., Kindrat, A.N., Sharif-Naeini, R., Bourque, C.W.: Actin filaments mediate mechanical gating during osmosensory transduction in rat Supraoptic nucleus neurons. J. Neurosci. 27, 4008–4013 (2007)CrossRef
77.
go back to reference Viana, F., de la Peña, E., Pecson, B., Schmidt, R.F., Belmonte, C.: Swelling-activated calcium signalling in cultured mouse primary sensory neurons. Eur. J. Neurosci. 13, 722–734 (2001)CrossRef Viana, F., de la Peña, E., Pecson, B., Schmidt, R.F., Belmonte, C.: Swelling-activated calcium signalling in cultured mouse primary sensory neurons. Eur. J. Neurosci. 13, 722–734 (2001)CrossRef
78.
go back to reference Vilceanu, D., Stucky, C.L.: TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One. 5, 1–10 (2010)CrossRef Vilceanu, D., Stucky, C.L.: TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One. 5, 1–10 (2010)CrossRef
79.
go back to reference Pavesi, A., Adriani, G., Rasponi, M., Zervantonakis, I.K., Fiore, G.B., Kamm, R.D.: Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 5, 11800 (2015)CrossRef Pavesi, A., Adriani, G., Rasponi, M., Zervantonakis, I.K., Fiore, G.B., Kamm, R.D.: Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 5, 11800 (2015)CrossRef
80.
go back to reference Nguyen, M.-D., Tinney, J.P., Ye, F., Elnakib, A.A., Yuan, F., El-Baz, A., Sethu, P., Keller, B.B., Giridharan, G.A.: Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal. Chem. 87, 2107–2113 (2015)CrossRef Nguyen, M.-D., Tinney, J.P., Ye, F., Elnakib, A.A., Yuan, F., El-Baz, A., Sethu, P., Keller, B.B., Giridharan, G.A.: Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal. Chem. 87, 2107–2113 (2015)CrossRef
81.
go back to reference Jacques-Fricke, B.T., Seow, Y., Gottlieb, P.A., Sachs, F., Gomez, T.M.: Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J. Neurosci. 26, 5656–5664 (2006)CrossRef Jacques-Fricke, B.T., Seow, Y., Gottlieb, P.A., Sachs, F., Gomez, T.M.: Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J. Neurosci. 26, 5656–5664 (2006)CrossRef
82.
go back to reference Honoré, E., Patel, A.J., Chemin, J., Suchyna, T., Sachs, F.: Desensitization of mechano-gated K2P channels. Proc. Natl. Acad. Sci. U. S. A. 103, 6859–6864 (2006)CrossRef Honoré, E., Patel, A.J., Chemin, J., Suchyna, T., Sachs, F.: Desensitization of mechano-gated K2P channels. Proc. Natl. Acad. Sci. U. S. A. 103, 6859–6864 (2006)CrossRef
83.
go back to reference Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef
84.
go back to reference Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. Anim. 33, 734–737 (1997)CrossRef Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. Anim. 33, 734–737 (1997)CrossRef
85.
go back to reference Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef
86.
go back to reference Augustine, G.J.: How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001)CrossRef Augustine, G.J.: How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001)CrossRef
87.
go back to reference Hirata, H., Tatsumi, H., Sokabe, M.: Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795–2804 (2008)CrossRef Hirata, H., Tatsumi, H., Sokabe, M.: Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795–2804 (2008)CrossRef
88.
go back to reference Fan, A., Stebbings, K.A., Llano, D.A., Saif, T.: Stretch induced hyperexcitability of mice callosal pathway. Front. Cell. Neurosci. 9, 292 (2015) Fan, A., Stebbings, K.A., Llano, D.A., Saif, T.: Stretch induced hyperexcitability of mice callosal pathway. Front. Cell. Neurosci. 9, 292 (2015)
89.
go back to reference Kashani, A.H., Chen, B.M., Grinnell, A.D.: Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J. Physiol. 530, 243–252 (2001)CrossRef Kashani, A.H., Chen, B.M., Grinnell, A.D.: Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J. Physiol. 530, 243–252 (2001)CrossRef
90.
go back to reference Kleiman, R.J., Reichardt, L.F.: Testing the agrin hypothesis. Cell. 85, 461–464 (1996)CrossRef Kleiman, R.J., Reichardt, L.F.: Testing the agrin hypothesis. Cell. 85, 461–464 (1996)CrossRef
91.
go back to reference Tourovskaia, A., Li, N., Folch, A.: Localized acetylcholine receptor clustering dynamics in response to microfluidic focal stimulation with agrin. Biophys. J. 95, 3009–3016 (2008)CrossRef Tourovskaia, A., Li, N., Folch, A.: Localized acetylcholine receptor clustering dynamics in response to microfluidic focal stimulation with agrin. Biophys. J. 95, 3009–3016 (2008)CrossRef
92.
go back to reference Vincent, A., Lang, B., Kleopa, K.A.: Autoimmune channelopathies and related neurological disorders. Neuron. 52, 123–138 (2006)CrossRef Vincent, A., Lang, B., Kleopa, K.A.: Autoimmune channelopathies and related neurological disorders. Neuron. 52, 123–138 (2006)CrossRef
93.
go back to reference Botzolakis, E.J., Maheshwari, A., Feng, H.J., Lagrange, A.H., Shaver, J.H., Kassebaum, N.J., Venkataraman, R., Baudenbacher, F., Macdonald, R.L.: Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics. J. Neurosci. Methods. 177, 294–302 (2009)CrossRef Botzolakis, E.J., Maheshwari, A., Feng, H.J., Lagrange, A.H., Shaver, J.H., Kassebaum, N.J., Venkataraman, R., Baudenbacher, F., Macdonald, R.L.: Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics. J. Neurosci. Methods. 177, 294–302 (2009)CrossRef
94.
go back to reference Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef
95.
go back to reference Taylor, A.M., Dieterich, D.C., Ito, H.T., Kim, S.A., Schuman, E.M.: Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 66, 57–68 (2010)CrossRef Taylor, A.M., Dieterich, D.C., Ito, H.T., Kim, S.A., Schuman, E.M.: Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 66, 57–68 (2010)CrossRef
96.
go back to reference Taylor, A.M., Jeon, N.L.: Micro-scale and microfluidic devices for neurobiology. Curr. Opin. Neurobiol. 20, 640–647 (2010)CrossRef Taylor, A.M., Jeon, N.L.: Micro-scale and microfluidic devices for neurobiology. Curr. Opin. Neurobiol. 20, 640–647 (2010)CrossRef
97.
go back to reference Croushore, C.A., Sweedler, J.V.: Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip. 13, 1666–1676 (2013)CrossRef Croushore, C.A., Sweedler, J.V.: Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip. 13, 1666–1676 (2013)CrossRef
98.
go back to reference Nandi, P., Desai, D.P., Lunte, S.M.: Development of a PDMS-based microchip electrophoresis device for continuous online in vivo monitoring of micro dialysis samples. Electrophoresis. 31, 1414–1422 (2010)CrossRef Nandi, P., Desai, D.P., Lunte, S.M.: Development of a PDMS-based microchip electrophoresis device for continuous online in vivo monitoring of micro dialysis samples. Electrophoresis. 31, 1414–1422 (2010)CrossRef
99.
go back to reference Wang, M., Roman, G.T., Perry, M.L., Kennedy, R.T.: Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem. 81, 9072–9078 (2009)CrossRef Wang, M., Roman, G.T., Perry, M.L., Kennedy, R.T.: Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem. 81, 9072–9078 (2009)CrossRef
100.
go back to reference Lamoureux, P., Buxbaum, R.E., Heidemann, S.R.: Direct evidence that growth cones pull. Nature. 340, 159–162 (1989)CrossRef Lamoureux, P., Buxbaum, R.E., Heidemann, S.R.: Direct evidence that growth cones pull. Nature. 340, 159–162 (1989)CrossRef
101.
go back to reference Chada, S., Lamoureux, P., Buxbaum, R.E., Heidemann, S.R.: Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110(Pt 1), 1179–1186 (1997) Chada, S., Lamoureux, P., Buxbaum, R.E., Heidemann, S.R.: Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110(Pt 1), 1179–1186 (1997)
102.
go back to reference Fass, J.N., Odde, D.J.: Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads. Biophys. J. 85, 623–636 (2003)CrossRef Fass, J.N., Odde, D.J.: Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads. Biophys. J. 85, 623–636 (2003)CrossRef
103.
go back to reference Franze, K., Gerdelmann, J., Weick, M., Betz, T., Pawlizak, S., Lakadamyali, M., Bayer, J., Rillich, K., Gögler, M., Lu, Y.B., et al.: Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97, 1883–1890 (2009)CrossRef Franze, K., Gerdelmann, J., Weick, M., Betz, T., Pawlizak, S., Lakadamyali, M., Bayer, J., Rillich, K., Gögler, M., Lu, Y.B., et al.: Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97, 1883–1890 (2009)CrossRef
104.
go back to reference Van Essen, D.C.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 385, 313–318 (1997)CrossRef Van Essen, D.C.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 385, 313–318 (1997)CrossRef
105.
go back to reference Rajagopalan, J., Tofangchi, A., Saif, T.A.: Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99, 3208–3215 (2010)CrossRef Rajagopalan, J., Tofangchi, A., Saif, T.A.: Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99, 3208–3215 (2010)CrossRef
106.
go back to reference Lu, W., Fox, P., Lakonishok, M., Davidson, M.W., Gelfand, V.I.: Initial neurite outgrowth in drosophila neurons is driven by Kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013)CrossRef Lu, W., Fox, P., Lakonishok, M., Davidson, M.W., Gelfand, V.I.: Initial neurite outgrowth in drosophila neurons is driven by Kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013)CrossRef
107.
go back to reference Smith, D.H., Wolf, J.A., Meaney, D.F.: A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7, 131–139 (2001)CrossRef Smith, D.H., Wolf, J.A., Meaney, D.F.: A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7, 131–139 (2001)CrossRef
108.
go back to reference McDonald, J.W.: Repairing the damaged spinal cord. Sci. Am. 281, 64–73 (1999)CrossRef McDonald, J.W.: Repairing the damaged spinal cord. Sci. Am. 281, 64–73 (1999)CrossRef
109.
go back to reference Ahmed, W.W., Kural, M.H., Saif, T.A.: A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomater. 6, 2979–2990 (2010)CrossRef Ahmed, W.W., Kural, M.H., Saif, T.A.: A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomater. 6, 2979–2990 (2010)CrossRef
110.
go back to reference Takayama, Y., Kotake, N., Haga, T., Suzuki, T., Mabuchi, K.: Formation of one-way-structured cultured neuronal networks in microfluidic devices combining with micropatterning techniques. J. Biosci. Bioeng. 114, 92–95 (2012)CrossRef Takayama, Y., Kotake, N., Haga, T., Suzuki, T., Mabuchi, K.: Formation of one-way-structured cultured neuronal networks in microfluidic devices combining with micropatterning techniques. J. Biosci. Bioeng. 114, 92–95 (2012)CrossRef
111.
go back to reference Park, J.W., Vahidi, B., Kim, H.J., Rhee, S.W., Jeon, N.L.: Quantitative analysis of CNS axon regeneration using a microfluidic neuron culture device. Biochip J. 2, 44–51 (2008) Park, J.W., Vahidi, B., Kim, H.J., Rhee, S.W., Jeon, N.L.: Quantitative analysis of CNS axon regeneration using a microfluidic neuron culture device. Biochip J. 2, 44–51 (2008)
112.
go back to reference Siddique, R., Thakor, N.: Investigation of nerve injury through microfluidic devices. J. R. Soc. Interface. 11, 20130676 (2014)CrossRef Siddique, R., Thakor, N.: Investigation of nerve injury through microfluidic devices. J. R. Soc. Interface. 11, 20130676 (2014)CrossRef
113.
go back to reference Nguyen, T.D., Hogue, I.B., Cung, K., Purohit, P.K., McAlpine, M.C.: Tension-induced neurite growth in microfluidic channels. Lab Chip. 13, 3735–3740 (2013)CrossRef Nguyen, T.D., Hogue, I.B., Cung, K., Purohit, P.K., McAlpine, M.C.: Tension-induced neurite growth in microfluidic channels. Lab Chip. 13, 3735–3740 (2013)CrossRef
114.
go back to reference Guo, S.X., Bourgeois, F., Chokshi, T., Durr, N.J., Hilliard, M.A., Chronis, N., Ben-Yakar, A.: Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods. 5, 531–533 (2008)CrossRef Guo, S.X., Bourgeois, F., Chokshi, T., Durr, N.J., Hilliard, M.A., Chronis, N., Ben-Yakar, A.: Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods. 5, 531–533 (2008)CrossRef
115.
go back to reference Chokshi, T.V., Ben-Yakar, A., Chronis, N.: CO2 and compressive immobilization of C. Elegans on-chip. Lab Chip. 9, 151–157 (2009)CrossRef Chokshi, T.V., Ben-Yakar, A., Chronis, N.: CO2 and compressive immobilization of C. Elegans on-chip. Lab Chip. 9, 151–157 (2009)CrossRef
116.
go back to reference Soichet, M.S., Tate, C.C., Baumann, M.D., LaPlaca, M.C.: Chapter 8: Strategies for regeneration and repair in the injured central nervous system. In: Indwelling Neural Implants. CRC Press/Taylor & Francis, Boca Raton, FL (2008) Soichet, M.S., Tate, C.C., Baumann, M.D., LaPlaca, M.C.: Chapter 8: Strategies for regeneration and repair in the injured central nervous system. In: Indwelling Neural Implants. CRC Press/Taylor & Francis, Boca Raton, FL (2008)
117.
go back to reference Luo, L., O’Leary, D.D.M.: Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005)CrossRef Luo, L., O’Leary, D.D.M.: Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005)CrossRef
118.
go back to reference Heidemann, S.R., Buxbaum, R.E.: Mechanical tension as a regulator of axonal development. Neurotoxicology. 15, 95–107 (1994) Heidemann, S.R., Buxbaum, R.E.: Mechanical tension as a regulator of axonal development. Neurotoxicology. 15, 95–107 (1994)
119.
go back to reference Bayly, P.V., Taber, L.A., Kroenke, C.D.: Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. Mater. 29, 568–581 (2014)CrossRef Bayly, P.V., Taber, L.A., Kroenke, C.D.: Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. Mater. 29, 568–581 (2014)CrossRef
120.
go back to reference Hilgetag, C.C., Barbas, H.: Developmental mechanics of the primate cerebral cortex. Anat Embryol. (Berl). 210, 411–417 (2005)CrossRef Hilgetag, C.C., Barbas, H.: Developmental mechanics of the primate cerebral cortex. Anat Embryol. (Berl). 210, 411–417 (2005)CrossRef
121.
go back to reference Hilgetag, C.C., Barbas, H.: Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput. Biol. 2, 146–159 (2006)CrossRef Hilgetag, C.C., Barbas, H.: Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput. Biol. 2, 146–159 (2006)CrossRef
122.
go back to reference Manzini, M.C., Walsh, C.A.: What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011)CrossRef Manzini, M.C., Walsh, C.A.: What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011)CrossRef
123.
go back to reference Nordahl, C.W., Dierker, D., Mostafavi, I., Schumann, C.M., Rivera, S.M., Amaral, D.G., Van Essen, D.C.: Cortical folding abnormalities in autism revealed by surface-based morphometry. J. Neurosci. 27, 11725–11735 (2007)CrossRef Nordahl, C.W., Dierker, D., Mostafavi, I., Schumann, C.M., Rivera, S.M., Amaral, D.G., Van Essen, D.C.: Cortical folding abnormalities in autism revealed by surface-based morphometry. J. Neurosci. 27, 11725–11735 (2007)CrossRef
124.
go back to reference Hardan, A.Y., Jou, R.J., Keshavan, M.S., Varma, R., Minshew, N.J.: Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res. 131, 263–268 (2004)CrossRef Hardan, A.Y., Jou, R.J., Keshavan, M.S., Varma, R., Minshew, N.J.: Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res. 131, 263–268 (2004)CrossRef
125.
go back to reference Hardan, A.Y., Muddasani, S., Vemulapalli, M., Keshavan, M.S., Minshew, N.J.: An MRI study of increased cortical thickness in autism. Am. J. Psychiatry. 163, 1290–1292 (2006)CrossRef Hardan, A.Y., Muddasani, S., Vemulapalli, M., Keshavan, M.S., Minshew, N.J.: An MRI study of increased cortical thickness in autism. Am. J. Psychiatry. 163, 1290–1292 (2006)CrossRef
126.
go back to reference Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L.: On the growth and form of cortical convolutions. Nat Phys. 12, 588–593 (2016)CrossRef Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L.: On the growth and form of cortical convolutions. Nat Phys. 12, 588–593 (2016)CrossRef
127.
go back to reference Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., Paus, T.: Brain size and folding of the human cerebral cortex. Cereb Cortex. 18, 2352–2357 (2008)CrossRef Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., Paus, T.: Brain size and folding of the human cerebral cortex. Cereb Cortex. 18, 2352–2357 (2008)CrossRef
128.
go back to reference Germanaud, D., Lefèvre, J., Toro, R., Fischer, C., Dubois, J., Hertz-Pannier, L., Mangin, J.F.: Larger is twistier: spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism. NeuroImage. 63, 1257–1272 (2012)CrossRef Germanaud, D., Lefèvre, J., Toro, R., Fischer, C., Dubois, J., Hertz-Pannier, L., Mangin, J.F.: Larger is twistier: spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism. NeuroImage. 63, 1257–1272 (2012)CrossRef
129.
go back to reference Sun, T., Hevner, R.F.: Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15, 217–232 (2014)CrossRef Sun, T., Hevner, R.F.: Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15, 217–232 (2014)CrossRef
130.
go back to reference Budday, S., Raybaud, C., Kuhl, E.: A mechanical model predicts morphological abnormalities in the developing human brain. Sci Rep. 4, 5644 (2014)CrossRef Budday, S., Raybaud, C., Kuhl, E.: A mechanical model predicts morphological abnormalities in the developing human brain. Sci Rep. 4, 5644 (2014)CrossRef
131.
go back to reference Tang, Y., Kim, J., Lopez-Valdes, H.E., Brennan, K.C., Ju, Y.S.: Development and characterization of a microfluidic chamber incorporating fluid ports with active suction for localized chemical stimulation of brain slices. Lab Chip. 11, 2247–2254 (2011)CrossRef Tang, Y., Kim, J., Lopez-Valdes, H.E., Brennan, K.C., Ju, Y.S.: Development and characterization of a microfluidic chamber incorporating fluid ports with active suction for localized chemical stimulation of brain slices. Lab Chip. 11, 2247–2254 (2011)CrossRef
132.
go back to reference Wang, J., Ren, L., Li, L., Liu, W., Zhou, J., Yu, W., Tong, D., Chen, S.: Microfluidics: a new cosset for neurobiology. Lab Chip. 9, 644–652 (2009)CrossRef Wang, J., Ren, L., Li, L., Liu, W., Zhou, J., Yu, W., Tong, D., Chen, S.: Microfluidics: a new cosset for neurobiology. Lab Chip. 9, 644–652 (2009)CrossRef
133.
134.
go back to reference Ellis, E.F., McKinney, J.S., Willoughby, K.A., Liang, S., Povlishock, J.T.: A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma. 12, 325–339 (1995)CrossRef Ellis, E.F., McKinney, J.S., Willoughby, K.A., Liang, S., Povlishock, J.T.: A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma. 12, 325–339 (1995)CrossRef
135.
go back to reference Nakayama, Y., Aoki, Y., Niitsu, H.: Studies on the mechanisms responsible for the formation of focal swellings on neuronal processes using a novel in vitro model of axonal injury. J. Neurotrauma. 18, 545–554 (2001)CrossRef Nakayama, Y., Aoki, Y., Niitsu, H.: Studies on the mechanisms responsible for the formation of focal swellings on neuronal processes using a novel in vitro model of axonal injury. J. Neurotrauma. 18, 545–554 (2001)CrossRef
136.
go back to reference Lusardi, T.A., Rangan, J., Sun, D., Smith, D.H., Meaney, D.F.: A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann. Biomed. Eng. 32, 1546–1558 (2004)CrossRef Lusardi, T.A., Rangan, J., Sun, D., Smith, D.H., Meaney, D.F.: A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann. Biomed. Eng. 32, 1546–1558 (2004)CrossRef
137.
go back to reference Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, D.R.: Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 103, 405–414 (2012)CrossRef Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, D.R.: Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 103, 405–414 (2012)CrossRef
138.
go back to reference Elkin, B.S., Azeloglu, E.U., Costa, K.D., Morrison, B.: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma. 24, 812–822 (2007)CrossRef Elkin, B.S., Azeloglu, E.U., Costa, K.D., Morrison, B.: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma. 24, 812–822 (2007)CrossRef
139.
go back to reference Maneshi, M.M., Sachs, F., Hua, S.Z.: A threshold shear force for calcium influx in an astrocyte model of traumatic brain injury. J. Neurotrauma. 32, 1020–1029 (2015)CrossRef Maneshi, M.M., Sachs, F., Hua, S.Z.: A threshold shear force for calcium influx in an astrocyte model of traumatic brain injury. J. Neurotrauma. 32, 1020–1029 (2015)CrossRef
140.
go back to reference Chronis, N.: Worm chips: microtools for C. Elegans biology. Lab Chip. 10, 432–437 (2010)CrossRef Chronis, N.: Worm chips: microtools for C. Elegans biology. Lab Chip. 10, 432–437 (2010)CrossRef
Metadata
Title
Micro- and Nanotechnologies to Probe Brain Mechanobiology
Author
Andy Kah Ping Tay
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69059-9_1