Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Acute Neural Stimulation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the previous chapter, I discussed the advantages of using nanotechnologies to probe the mechano-biology of the brain. In this chapter, I describe the development of a magnetic microfabricated substrate and magnetic nanoparticle technology to induce calcium influx in neural networks by enhancing the opening probability of mechano-sensitive N-type Ca2+ channels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E.: Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. U. S. A. 98, 11024–11031 (2001)CrossRef West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E.: Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. U. S. A. 98, 11024–11031 (2001)CrossRef
2.
go back to reference Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., Geiger, J.D.: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000)CrossRef
3.
go back to reference Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium--a life and death signal. Nature. 395, 645–648 (1998)CrossRef Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium--a life and death signal. Nature. 395, 645–648 (1998)CrossRef
4.
go back to reference Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324, 1080–1084 (2009)CrossRef
5.
go back to reference Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012)CrossRef
6.
go back to reference Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R.H.: Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004)CrossRef Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R.H.: Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004)CrossRef
7.
go back to reference Tyler, W.J., Tufail, Y., Finsterwald, M., Tauchmann, M.L., Olson, E.J., Majestic, C.: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 3, e3511 (2008)CrossRef Tyler, W.J., Tufail, Y., Finsterwald, M., Tauchmann, M.L., Olson, E.J., Majestic, C.: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 3, e3511 (2008)CrossRef
8.
go back to reference Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9(7), 7678–7689 (2015)CrossRef Marino, A., Arai, S., Hou, Y., Sinibaldi, E., Pellegrino, M., Chang, Y.-T., Mazzolai, B., Mattoli, V., Suzuki, M., Ciofani, G.: Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano. 9(7), 7678–7689 (2015)CrossRef
9.
go back to reference Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G.: Selective photostimulation of genetically chARGed neurons. Neuron. 33, 15–22 (2002)CrossRef Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G.: Selective photostimulation of genetically chARGed neurons. Neuron. 33, 15–22 (2002)CrossRef
10.
go back to reference Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)CrossRef Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)CrossRef
11.
go back to reference Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., van Zessen, R., Stuber, G.D.: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012)CrossRef Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., van Zessen, R., Stuber, G.D.: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012)CrossRef
12.
go back to reference Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260, 1124–1127 (1993)CrossRef Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260, 1124–1127 (1993)CrossRef
13.
go back to reference Hughes, S., McBain, S., Dobson, J., El Haj, A.J.: Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface. 5, 855–863 (2008)CrossRef Hughes, S., McBain, S., Dobson, J., El Haj, A.J.: Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface. 5, 855–863 (2008)CrossRef
14.
go back to reference Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010)CrossRef
15.
go back to reference Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science. 347, 1477–1480 (2015)CrossRef
16.
go back to reference Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015)CrossRef
17.
go back to reference Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. - Anim. 33, 734–737 (1997)CrossRef Kisaalita, W.S., Evans, M., Lund, R.B.: Size changes in differentiating neuroblastoma cells. Vitr. Cell. Dev. Biol. - Anim. 33, 734–737 (1997)CrossRef
18.
go back to reference Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef Clement, G.T., Nomura, H., Adachi, H., Kamakura, T.: The feasibility of non-contact ultrasound for medical imaging. Phys. Med. Biol. 58, 6263–6278 (2013)CrossRef
19.
go back to reference Steketee, M.B., Moysidis, S.N., Jin, X.-L., Weinstein, J.E., Pita-Thomas, W., Raju, H.B., Iqbal, S., Goldberg, J.L.: Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. 108, 19042–19047 (2011)CrossRef Steketee, M.B., Moysidis, S.N., Jin, X.-L., Weinstein, J.E., Pita-Thomas, W., Raju, H.B., Iqbal, S., Goldberg, J.L.: Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. 108, 19042–19047 (2011)CrossRef
20.
go back to reference Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9(4), 3664–3676 (2015)CrossRef Kunze, A., Tseng, P., Godzich, C., Murray, C., Caputo, A., Schweizer, F.E., Di Carlo, D.: Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9(4), 3664–3676 (2015)CrossRef
21.
go back to reference Tay, A.K., Dhar, M., Pushkarsky, I., Di Carlo, D.: Research highlights: manipulating cells inside and out. Lab Chip. 15, 2533–2537 (2015)CrossRef Tay, A.K., Dhar, M., Pushkarsky, I., Di Carlo, D.: Research highlights: manipulating cells inside and out. Lab Chip. 15, 2533–2537 (2015)CrossRef
22.
go back to reference Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)CrossRef Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)CrossRef
23.
go back to reference Jung, S., Bang, M., Kim, B.S., Lee, S., Kotov, N.A., Kim, B., Jeon, D.: Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 9, e91360 (2014)CrossRef Jung, S., Bang, M., Kim, B.S., Lee, S., Kotov, N.A., Kim, B., Jeon, D.: Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 9, e91360 (2014)CrossRef
24.
go back to reference Kim, S., Im, W.S., Kang, L., Lee, S.T., Chu, K., Kim, B.I.: The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods. 174, 91–96 (2008)CrossRef Kim, S., Im, W.S., Kang, L., Lee, S.T., Chu, K., Kim, B.I.: The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods. 174, 91–96 (2008)CrossRef
25.
go back to reference Etoc, F., Vicario, C., Lisse, D., Siaugue, J.-M., Piehler, J., Coppey, M., Dahan, M.: Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15(5), 3487–3494 (2015)CrossRef Etoc, F., Vicario, C., Lisse, D., Siaugue, J.-M., Piehler, J., Coppey, M., Dahan, M.: Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 15(5), 3487–3494 (2015)CrossRef
26.
go back to reference Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8, 2439–2455 (2014)CrossRef Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8, 2439–2455 (2014)CrossRef
27.
go back to reference Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6, 5845–5857 (2012)CrossRef Lesniak, A., Fenaroli, F., Monopoli, M.P., Åberg, C., Dawson, K.A., Salvati, A.: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 6, 5845–5857 (2012)CrossRef
28.
go back to reference He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31, 3657–3666 (2010)CrossRef He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31, 3657–3666 (2010)CrossRef
29.
go back to reference Gao, H., Yang, Z., Zhang, S., Cao, S., Shen, S., Pang, Z., Jiang, X.: Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 3, 2534 (2013)CrossRef Gao, H., Yang, Z., Zhang, S., Cao, S., Shen, S., Pang, Z., Jiang, X.: Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep. 3, 2534 (2013)CrossRef
30.
go back to reference Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., Catterall, W.A.: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 9, 1099–1115 (1992)CrossRef Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., Catterall, W.A.: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 9, 1099–1115 (1992)CrossRef
31.
go back to reference Rao, W., Wang, H., Han, J., Zhao, S., Dumbleton, J., Agarwal, P., Zhang, W., Zhao, G., Yu, J., Zynger, D.L., et al.: Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 9, 5725–5740 (2015)CrossRef Rao, W., Wang, H., Han, J., Zhao, S., Dumbleton, J., Agarwal, P., Zhang, W., Zhao, G., Yu, J., Zynger, D.L., et al.: Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 9, 5725–5740 (2015)CrossRef
32.
go back to reference Patel, J.C., Witkovsky, P., Avshalumov, M.V., Rice, M.E.: Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J. Neurosci. 29, 6568–6579 (2009)CrossRef Patel, J.C., Witkovsky, P., Avshalumov, M.V., Rice, M.E.: Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J. Neurosci. 29, 6568–6579 (2009)CrossRef
33.
go back to reference Dworakowska, B., Dołowy, K., Tyson, J.R., Snutch, T.P., Piontkivska, H., Hughes, A.L., Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A., et al.: Molecular nature of voltage-gated calcium channels: structure and species comparison. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2, 181–206 (2013)CrossRef Dworakowska, B., Dołowy, K., Tyson, J.R., Snutch, T.P., Piontkivska, H., Hughes, A.L., Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A., et al.: Molecular nature of voltage-gated calcium channels: structure and species comparison. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2, 181–206 (2013)CrossRef
34.
go back to reference Calabrese, B., Tabarean, I.V., Juranka, P., Morris, C.E.: Mechanosensitivity of N-type calcium channel currents. Biophys. J. 83, 2560–2574 (2002)CrossRef Calabrese, B., Tabarean, I.V., Juranka, P., Morris, C.E.: Mechanosensitivity of N-type calcium channel currents. Biophys. J. 83, 2560–2574 (2002)CrossRef
35.
go back to reference McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., Yoshikami, D.: Omega-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U. S. A. 84, 4327–4331 (1987)CrossRef McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., Yoshikami, D.: Omega-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U. S. A. 84, 4327–4331 (1987)CrossRef
36.
go back to reference Sabass, B., Stone, H.A.: Mechanosensing by tethered membrane channels. Bull. Am. Phys. Soc. 61, 2 (2016) Sabass, B., Stone, H.A.: Mechanosensing by tethered membrane channels. Bull. Am. Phys. Soc. 61, 2 (2016)
37.
go back to reference Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, S., Petrus, M.J., Dubin, A.E., Patapoutian, A.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 55–60 (2010)CrossRef
38.
go back to reference Zhao, Q., Wu, K., Geng, J., Chi, S., Wang, Y., Zhi, P., Zhang, M., Xiao, B.: Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron. 89, 1248–1263 (2016)CrossRef Zhao, Q., Wu, K., Geng, J., Chi, S., Wang, Y., Zhi, P., Zhang, M., Xiao, B.: Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron. 89, 1248–1263 (2016)CrossRef
39.
go back to reference Tay, A., Kunze, A., Jun, D., Hoek, E., Di Carlo, D.: The age of cortical neural networks affects their interactions with magnetic nanoparticles. Small. 12(26), 3559–3567 (2016)CrossRef Tay, A., Kunze, A., Jun, D., Hoek, E., Di Carlo, D.: The age of cortical neural networks affects their interactions with magnetic nanoparticles. Small. 12(26), 3559–3567 (2016)CrossRef
40.
go back to reference Chameau, P., Lucas, P., Melliti, K., Bournaud, R., Shimahara, T.: Development of multiple calcium channel types in cultured mouse hippocampal neurons. Neuroscience. 90, 383–388 (1999)CrossRef Chameau, P., Lucas, P., Melliti, K., Bournaud, R., Shimahara, T.: Development of multiple calcium channel types in cultured mouse hippocampal neurons. Neuroscience. 90, 383–388 (1999)CrossRef
41.
go back to reference Stanley, S.A., Gagner, J.E., Damanpour, S., Yoshida, M., Dordick, J.S., Friedman, J.M.: Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 336, 604–608 (2012)CrossRef Stanley, S.A., Gagner, J.E., Damanpour, S., Yoshida, M., Dordick, J.S., Friedman, J.M.: Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 336, 604–608 (2012)CrossRef
42.
go back to reference Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S., Friedman, J.M.: Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2014)CrossRef Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S., Friedman, J.M.: Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2014)CrossRef
43.
go back to reference Stanley, S.A., Kelly, L., Latcha, K.N., Schmidt, S.F., Yu, X., Nectow, A.R., Sauer, J., Dyke, J.P., Dordick, J.S., Friedman, J.M.: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 531(7596), 647–650 (2016)CrossRef Stanley, S.A., Kelly, L., Latcha, K.N., Schmidt, S.F., Yu, X., Nectow, A.R., Sauer, J., Dyke, J.P., Dordick, J.S., Friedman, J.M.: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 531(7596), 647–650 (2016)CrossRef
44.
go back to reference Wheeler, M.A., Smith, C.J., Ottolini, M., Barker, B.S., Purohit, A.M., Grippo, R.M., Gaykema, R.P., Spano, A.J., Beenhakker, M.P., Kucenas, S., et al.: Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19(5), 756–761 (2016)CrossRef Wheeler, M.A., Smith, C.J., Ottolini, M., Barker, B.S., Purohit, A.M., Grippo, R.M., Gaykema, R.P., Spano, A.J., Beenhakker, M.P., Kucenas, S., et al.: Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19(5), 756–761 (2016)CrossRef
45.
go back to reference Hudspeth, A.J.: Making an effort to listen: mechanical amplification in the ear. Neuron. 59, 530–545 (2008)CrossRef Hudspeth, A.J.: Making an effort to listen: mechanical amplification in the ear. Neuron. 59, 530–545 (2008)CrossRef
46.
go back to reference Delmas, P., Coste, B.: Mechano-gated ion channels in sensory systems. Cell. 155, 278–284 (2013)CrossRef Delmas, P., Coste, B.: Mechano-gated ion channels in sensory systems. Cell. 155, 278–284 (2013)CrossRef
47.
go back to reference Pravettoni, E., Bacci, A., Coco, S., Forbicini, P., Matteoli, M., Verderio, C.: Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000)CrossRef Pravettoni, E., Bacci, A., Coco, S., Forbicini, P., Matteoli, M., Verderio, C.: Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000)CrossRef
48.
go back to reference Cai, D., Mataraza, J.M., Qin, Z.-H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)CrossRef Cai, D., Mataraza, J.M., Qin, Z.-H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)CrossRef
49.
go back to reference Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Rémy, J.S., Krötz, F., Anton, M., Lausier, J., Rosenecker, J.: The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003)CrossRef Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Rémy, J.S., Krötz, F., Anton, M., Lausier, J., Rosenecker, J.: The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003)CrossRef
50.
go back to reference Santos, L.J., Reis, R.L., Gomes, M.E.: Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef Santos, L.J., Reis, R.L., Gomes, M.E.: Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef
51.
go back to reference Ito, A., Akiyama, H., Kawabe, Y., Kamihira, M.: Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef Ito, A., Akiyama, H., Kawabe, Y., Kamihira, M.: Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef
52.
go back to reference Kriha, O., Becker, M., Lehmann, M., Kriha, D., Krieglstein, J., Yosef, M., Schlecht, S., Wehrspohn, R.B., Wendorff, J.H., Greiner, A.: Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators. Adv. Mater. 19, 2483–2485 (2007)CrossRef Kriha, O., Becker, M., Lehmann, M., Kriha, D., Krieglstein, J., Yosef, M., Schlecht, S., Wehrspohn, R.B., Wendorff, J.H., Greiner, A.: Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators. Adv. Mater. 19, 2483–2485 (2007)CrossRef
53.
go back to reference Sakar, M.S., Steager, E.B., Cowley, A., Kumar, V., Pappas, G.J.: Wireless manipulation of single cells using magnetic microtransporters. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2668–2673. IEEE, Shanghai (2011)CrossRef Sakar, M.S., Steager, E.B., Cowley, A., Kumar, V., Pappas, G.J.: Wireless manipulation of single cells using magnetic microtransporters. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2668–2673. IEEE, Shanghai (2011)CrossRef
54.
go back to reference Xie, J., Chen, L., Varadan, V.K., Yancey, J., Srivatsan, M.: The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology. 19, 105101 (2008)CrossRef Xie, J., Chen, L., Varadan, V.K., Yancey, J., Srivatsan, M.: The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology. 19, 105101 (2008)CrossRef
55.
go back to reference Fischer, T.M., Steinmetz, P.N., Odde, D.J.: Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann. Biomed. Eng. 33, 1229–1237 (2005)CrossRef Fischer, T.M., Steinmetz, P.N., Odde, D.J.: Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann. Biomed. Eng. 33, 1229–1237 (2005)CrossRef
56.
go back to reference Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M., Ingber, D.E.: Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008)CrossRef Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M., Ingber, D.E.: Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008)CrossRef
57.
go back to reference Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef Tyler, W.J.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRef
58.
go back to reference Rosenberg, S.S., Spitzer, N.C.: Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, 1–13 (2011)CrossRef Rosenberg, S.S., Spitzer, N.C.: Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, 1–13 (2011)CrossRef
59.
go back to reference Perlmutter, J.S., Mink, J.W.: Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006)CrossRef Perlmutter, J.S., Mink, J.W.: Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006)CrossRef
60.
go back to reference Matthews, B.D., Lavan, D.A., Overby, D.R., Karavitis, J., Ingber, D.E.: Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett. 85, 2968–2970 (2004)CrossRef Matthews, B.D., Lavan, D.A., Overby, D.R., Karavitis, J., Ingber, D.E.: Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett. 85, 2968–2970 (2004)CrossRef
61.
go back to reference Carvalho-de-Souza, J.L., Treger, J.S., Dang, B., Kent, S.B.H., Pepperberg, D.R., Bezanilla, F.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86, 207–217 (2015)CrossRef Carvalho-de-Souza, J.L., Treger, J.S., Dang, B., Kent, S.B.H., Pepperberg, D.R., Bezanilla, F.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86, 207–217 (2015)CrossRef
62.
go back to reference Summers, H.D., Rees, P., Holton, M.D., Brown, M.R., Chappell, S.C., Smith, P.J., Errington, R.J.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011)CrossRef Summers, H.D., Rees, P., Holton, M.D., Brown, M.R., Chappell, S.C., Smith, P.J., Errington, R.J.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011)CrossRef
63.
go back to reference Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)CrossRef Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)CrossRef
64.
go back to reference Grünberg, K., Wawer, C., Tebo, B.M., Schüler, D.: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001)CrossRef Grünberg, K., Wawer, C., Tebo, B.M., Schüler, D.: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001)CrossRef
65.
go back to reference Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499, 295–300 (2013)CrossRef Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499, 295–300 (2013)CrossRef
66.
go back to reference Eggeman, A.S., Majetich, S.A., Farrell, D., Pankhurst, Q.A.: Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans. Magn. 43, 2451–2453 (2007)CrossRef Eggeman, A.S., Majetich, S.A., Farrell, D., Pankhurst, Q.A.: Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans. Magn. 43, 2451–2453 (2007)CrossRef
67.
go back to reference Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 32, 2183–2193 (2011)CrossRef Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 32, 2183–2193 (2011)CrossRef
68.
go back to reference Kong, S.D., Zhang, W., Lee, J.H., Brammer, K., Lal, R., Karin, M., Jin, S.: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 10, 5088–5092 (2010)CrossRef Kong, S.D., Zhang, W., Lee, J.H., Brammer, K., Lal, R., Karin, M., Jin, S.: Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 10, 5088–5092 (2010)CrossRef
Metadata
Title
Acute Neural Stimulation
Author
Andy Kah Ping Tay
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69059-9_2