Skip to main content
Top
Published in: Journal of Electronic Materials 8/2021

07-06-2021 | Original Research Article

Micro-Spatial Hydrothermal Preparation of Nitrogen-doped Carbon/NiCo2S4 Electrode Material for Supercapacitors

Authors: Qingyuan Niu, Zixin Feng, Kezheng Gao, Qiheng Tang, Xiankai Sun, Lizhen Wang

Published in: Journal of Electronic Materials | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reasonable combination of carbon and pseudocapacitive material in a composite electrode can produce a high-performance supercapacitor. However, the nano-structured pseudocapacitive materials tend to assemble randomly into microscale bulky forms during the preparation of composite electrode materials, which suffer from a low specific surface area and a mechanically weak structure, resulting in poor electrochemical performance. In this article, a nitrogen-doped carbon/NiCo2S4 electrode material was prepared by micro-spatial hydrothermal reaction in the multicellular microstructure of auricularia. The micro-space-multicellular microstructure of auricularia can provide a huge and efficient nucleation center of NiCo2S4 nanomaterials during the hydrothermal reaction. The morphology of nitrogen-doped carbon/NiCo2S4 electrode material can be effectively controlled by changing the amount of metal ions. The stacked NiCo2S4 nanoparticles of the NC/NiCo2S4-6 electrode material exhibit a network-like structure to a certain extent. The maximum mass specific capacitance of the NC/NiCo2S4-6 electrode material is about 1131 F g−1 at a current density of 0.25 A g−1. There is 81.5% retention of its initial capacitance after 10,000 cycles.

Graphic Abstract

The NC/NiCo2S4 electrode material, prepared by micro-spatial hydrothermal reaction in the multicellular microstructure of auricularia, exhibits good electrochemical cycling stability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef
2.
go back to reference G.D. Nie, Y. Zhu, D. Tian, and C. Wang, Chem. Res. Chin. Univ. 39, 1349 (2018). G.D. Nie, Y. Zhu, D. Tian, and C. Wang, Chem. Res. Chin. Univ. 39, 1349 (2018).
3.
go back to reference K. Poonam Sharma, A. Arora, and S.K. Tripathi, J. Energy Storage 21, 801 (2019).CrossRef K. Poonam Sharma, A. Arora, and S.K. Tripathi, J. Energy Storage 21, 801 (2019).CrossRef
4.
go back to reference Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, J. Mater. Sci. 56, 173 (2021).CrossRef Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, J. Mater. Sci. 56, 173 (2021).CrossRef
5.
7.
go back to reference Z.N. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).CrossRef Z.N. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).CrossRef
8.
go back to reference C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, and J.J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).CrossRef C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, and J.J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).CrossRef
9.
go back to reference J.B. Wu, R.Q. Guo, X.H. Huang, and Y. Lin, J. Power Sources. 243, 317 (2013).CrossRef J.B. Wu, R.Q. Guo, X.H. Huang, and Y. Lin, J. Power Sources. 243, 317 (2013).CrossRef
10.
go back to reference Q. Xiong, C. Zheng, H. Chi, J. Zhang, and Z. Ji, Nanotechnology 28, 055405 (2017).CrossRef Q. Xiong, C. Zheng, H. Chi, J. Zhang, and Z. Ji, Nanotechnology 28, 055405 (2017).CrossRef
12.
go back to reference X.H. Zheng, L. Yao, Y.P. Qiu, S.R. Wang, and K. Zhang, ACS Appl. Energy Mater. 2, 4335 (2019).CrossRef X.H. Zheng, L. Yao, Y.P. Qiu, S.R. Wang, and K. Zhang, ACS Appl. Energy Mater. 2, 4335 (2019).CrossRef
13.
14.
go back to reference J.L. Ge, G. Fan, Y. Si, J.X. He, H.Y. Kim, B. Ding, S.S. Al-Deyab, M. El-Newehy, and J.Y. Yu, Nanoscale 8, 2195 (2016).CrossRef J.L. Ge, G. Fan, Y. Si, J.X. He, H.Y. Kim, B. Ding, S.S. Al-Deyab, M. El-Newehy, and J.Y. Yu, Nanoscale 8, 2195 (2016).CrossRef
15.
go back to reference N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu, and H. Xia, Adv. Mater. 29, 1700804 (2017).CrossRef N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu, and H. Xia, Adv. Mater. 29, 1700804 (2017).CrossRef
16.
go back to reference T.F. Yi, J.J. Pan, T.T. Wei, Y.W. Li, and G.Z. Cao, Nano Today. 33, 100894 (2020).CrossRef T.F. Yi, J.J. Pan, T.T. Wei, Y.W. Li, and G.Z. Cao, Nano Today. 33, 100894 (2020).CrossRef
17.
go back to reference S.H. Zhao, Z.B. Yang, W.W. Xu, Q.Y. Zhang, X.M. Zhao, and X. Wen, Electrochim. Acta 297, 334 (2019).CrossRef S.H. Zhao, Z.B. Yang, W.W. Xu, Q.Y. Zhang, X.M. Zhao, and X. Wen, Electrochim. Acta 297, 334 (2019).CrossRef
18.
go back to reference Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, and F.F. Xu, Appl. Surf. Sci. 347, 690 (2015).CrossRef Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, and F.F. Xu, Appl. Surf. Sci. 347, 690 (2015).CrossRef
19.
go back to reference F. Li, R.C. Xu, Y.M. Li, F. Liang, D.F. Zhang, W.F. Fu, and X.J. Lv, Carbon 145, 521 (2019).CrossRef F. Li, R.C. Xu, Y.M. Li, F. Liang, D.F. Zhang, W.F. Fu, and X.J. Lv, Carbon 145, 521 (2019).CrossRef
20.
go back to reference Y.F. Yuan, L.W. Ye, D. Zhang, F. Chen, M. Zhu, L.N. Wang, S.M. Yin, G.S. Cai, and S.Y. Guo, Electrochim. Acta 299, 289 (2019).CrossRef Y.F. Yuan, L.W. Ye, D. Zhang, F. Chen, M. Zhu, L.N. Wang, S.M. Yin, G.S. Cai, and S.Y. Guo, Electrochim. Acta 299, 289 (2019).CrossRef
21.
go back to reference Y. Wu, Y.F. Yuan, J.Y. Xiang, S.M. Yin, and S.Y. Guo, Polyhedron 170, 101 (2019).CrossRef Y. Wu, Y.F. Yuan, J.Y. Xiang, S.M. Yin, and S.Y. Guo, Polyhedron 170, 101 (2019).CrossRef
22.
go back to reference X.F. Chen, Y. Huang, K.C. Zhang, X.S. Feng, and S.P. Li, J. Alloys Compd. 686, 905 (2016).CrossRef X.F. Chen, Y. Huang, K.C. Zhang, X.S. Feng, and S.P. Li, J. Alloys Compd. 686, 905 (2016).CrossRef
23.
go back to reference X.H. Xiong, G. Waller, D. Ding, D.C. Chen, B. Rainwater, B.T. Zhao, Z.X. Wang, and M.L. Liu, Nano Energy 16, 71 (2015).CrossRef X.H. Xiong, G. Waller, D. Ding, D.C. Chen, B. Rainwater, B.T. Zhao, Z.X. Wang, and M.L. Liu, Nano Energy 16, 71 (2015).CrossRef
24.
go back to reference Z.P. Ma, G.J. Shao, Y.Q. Fan, G.L. Wang, J.J. Song, and D.J. Shen, ACS Appl. Mater. Interfaces. 8, 9050 (2016).CrossRef Z.P. Ma, G.J. Shao, Y.Q. Fan, G.L. Wang, J.J. Song, and D.J. Shen, ACS Appl. Mater. Interfaces. 8, 9050 (2016).CrossRef
25.
go back to reference Y.F. Tang, S.J. Chen, S.C. Mu, T. Chen, Y.Q. Qiao, S.X. Yu, and F.N. Gao, ACS Appl. Mater. Interfaces. 8, 9721 (2016).CrossRef Y.F. Tang, S.J. Chen, S.C. Mu, T. Chen, Y.Q. Qiao, S.X. Yu, and F.N. Gao, ACS Appl. Mater. Interfaces. 8, 9721 (2016).CrossRef
26.
go back to reference B.X. Li, Z. Tian, H.J. Li, Z.W. Yang, Y.Z. Wang, and X.M. Wang, Electrochim. Acta 314, 32 (2019).CrossRef B.X. Li, Z. Tian, H.J. Li, Z.W. Yang, Y.Z. Wang, and X.M. Wang, Electrochim. Acta 314, 32 (2019).CrossRef
27.
go back to reference Y.P. Liu, Z.L. Li, L. Yao, S.M. Chen, P.X. Zhang, and L.B. Deng, Chem. Eng. J. 366, 550 (2019).CrossRef Y.P. Liu, Z.L. Li, L. Yao, S.M. Chen, P.X. Zhang, and L.B. Deng, Chem. Eng. J. 366, 550 (2019).CrossRef
28.
go back to reference X.R. Han, Q. Chen, H. Zhang, Y.H. Ni, and L. Zhang, Chem. Eng. J. 368, 513 (2019).CrossRef X.R. Han, Q. Chen, H. Zhang, Y.H. Ni, and L. Zhang, Chem. Eng. J. 368, 513 (2019).CrossRef
29.
go back to reference J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, and S. Wang, Nano Lett. 14, 831 (2014).CrossRef J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, and S. Wang, Nano Lett. 14, 831 (2014).CrossRef
30.
go back to reference H.B. Zhang, H. Li, Z.P. Sun, and D.Z. Jia, J. Power Sources. 439, 227082 (2019).CrossRef H.B. Zhang, H. Li, Z.P. Sun, and D.Z. Jia, J. Power Sources. 439, 227082 (2019).CrossRef
31.
go back to reference F. Lu, M. Zhou, W.R. Li, Q.H. Weng, C.L. Li, Y.M. Xue, X.F. Jiang, X.H. Zeng, Y. Bando, and D. Golberg, Nano Energy 26, 313 (2016).CrossRef F. Lu, M. Zhou, W.R. Li, Q.H. Weng, C.L. Li, Y.M. Xue, X.F. Jiang, X.H. Zeng, Y. Bando, and D. Golberg, Nano Energy 26, 313 (2016).CrossRef
32.
33.
go back to reference W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li, K. Feng, L. Yang, Y.L. Ding, T.W. Yu, Z.W. Chen, and A.P. Yu, Adv. Funct. Mater. 28, 1706675 (2018).CrossRef W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li, K. Feng, L. Yang, Y.L. Ding, T.W. Yu, Z.W. Chen, and A.P. Yu, Adv. Funct. Mater. 28, 1706675 (2018).CrossRef
34.
go back to reference L.L. Jiang, L.Z. Sheng, X. Chen, T. Wei, and Z.J. Fan, J. Mater. Chem. A Mater. 4, 11388 (2016).CrossRef L.L. Jiang, L.Z. Sheng, X. Chen, T. Wei, and Z.J. Fan, J. Mater. Chem. A Mater. 4, 11388 (2016).CrossRef
35.
36.
go back to reference M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Electrochim. Acta 293, 328 (2019).CrossRef M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Electrochim. Acta 293, 328 (2019).CrossRef
37.
go back to reference Y. Xiao, Y. Lei, B. Zheng, Gu. Li, Y. Wang, and D. Xiao, RSC Adv. 5, 21604 (2015).CrossRef Y. Xiao, Y. Lei, B. Zheng, Gu. Li, Y. Wang, and D. Xiao, RSC Adv. 5, 21604 (2015).CrossRef
38.
go back to reference T. Yang, R. Li, Z. Li, Gu. Zhiguo, G. Wang, and J. Liu, Electrochim. Acta 211, 59 (2016).CrossRef T. Yang, R. Li, Z. Li, Gu. Zhiguo, G. Wang, and J. Liu, Electrochim. Acta 211, 59 (2016).CrossRef
39.
go back to reference Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang, Y.-N. Zhou, Hu. Linfeng, and D. Sun, J. Mater. Chem. A Mater. 5, 9022 (2017).CrossRef Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang, Y.-N. Zhou, Hu. Linfeng, and D. Sun, J. Mater. Chem. A Mater. 5, 9022 (2017).CrossRef
40.
go back to reference L. Estevez, V. Prabhakaran, A.L. Garcia, Y. Shin, J. Tao, A.M. Schwarz, J. Darsell, P. Bhattacharya, V. Shutthanandan, and J.-G. Zhang, ACS Nano 11, 11047 (2017).CrossRef L. Estevez, V. Prabhakaran, A.L. Garcia, Y. Shin, J. Tao, A.M. Schwarz, J. Darsell, P. Bhattacharya, V. Shutthanandan, and J.-G. Zhang, ACS Nano 11, 11047 (2017).CrossRef
41.
go back to reference J. Zhang, X. Wang, G. Qi, B. Li, Z. Song, H. Jiang, X. Zhang, and J. Qiao, Carbon 96, 864 (2016).CrossRef J. Zhang, X. Wang, G. Qi, B. Li, Z. Song, H. Jiang, X. Zhang, and J. Qiao, Carbon 96, 864 (2016).CrossRef
42.
go back to reference Hu. Lintong, J. Hou, Y. Ma, H. Li, and T. Zhai, J. Mater. Chem. A Mater. 4, 15006 (2016).CrossRef Hu. Lintong, J. Hou, Y. Ma, H. Li, and T. Zhai, J. Mater. Chem. A Mater. 4, 15006 (2016).CrossRef
43.
go back to reference L. Hao, L.F. Shen, J. Wang, Y.L. Xu, and X.G. Zhang, RSC Adv. 6, 9950 (2016).CrossRef L. Hao, L.F. Shen, J. Wang, Y.L. Xu, and X.G. Zhang, RSC Adv. 6, 9950 (2016).CrossRef
44.
go back to reference Y. Li, F.F. An, H.R. Wu, S.M. Zhu, C.Y.Z. Lin, M.D. Xia, K. Xue, D. Zhang, and K. Lian, J. Power Sources. 427, 138 (2019).CrossRef Y. Li, F.F. An, H.R. Wu, S.M. Zhu, C.Y.Z. Lin, M.D. Xia, K. Xue, D. Zhang, and K. Lian, J. Power Sources. 427, 138 (2019).CrossRef
45.
46.
go back to reference Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, and H.L. Li, J. Power Sources. 307, 391 (2016).CrossRef Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, and H.L. Li, J. Power Sources. 307, 391 (2016).CrossRef
47.
go back to reference J. Zhao, H.W. Lai, Z.Y. Lyu, Y.F. Jiang, K. Xie, X.Z. Wang, Q. Wu, L.J. Yang, Z. Jin, Y.W. Ma, J. Liu, and Z. Hu, Adv. Mater. 27, 3541 (2015).CrossRef J. Zhao, H.W. Lai, Z.Y. Lyu, Y.F. Jiang, K. Xie, X.Z. Wang, Q. Wu, L.J. Yang, Z. Jin, Y.W. Ma, J. Liu, and Z. Hu, Adv. Mater. 27, 3541 (2015).CrossRef
48.
go back to reference W.Q. Tian, Q.M. Gao, L.M. Zhang, C.X. Yang, Z.Y. Li, Y.L. Tan, W.W. Qian, and H. Zhang, J. Mater. Chem. A Mater. 4, 8690 (2016).CrossRef W.Q. Tian, Q.M. Gao, L.M. Zhang, C.X. Yang, Z.Y. Li, Y.L. Tan, W.W. Qian, and H. Zhang, J. Mater. Chem. A Mater. 4, 8690 (2016).CrossRef
Metadata
Title
Micro-Spatial Hydrothermal Preparation of Nitrogen-doped Carbon/NiCo2S4 Electrode Material for Supercapacitors
Authors
Qingyuan Niu
Zixin Feng
Kezheng Gao
Qiheng Tang
Xiankai Sun
Lizhen Wang
Publication date
07-06-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09042-z

Other articles of this Issue 8/2021

Journal of Electronic Materials 8/2021 Go to the issue