Skip to main content
Top
Published in: Physics of Metals and Metallography 9/2018

01-09-2018 | STRENGTH AND PLASTICITY

Microstructure and Mechanical Properties of a Near-α-Titanium-Alloy/TiB Composite Prepared in situ by Casting and Subjected to Deformation and Heat Treatment

Authors: R. A. Gaisin, V. M. Imayev, R. M. Imayev

Published in: Physics of Metals and Metallography | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the results of our study of the microstructure and mechanical properties of a short-fiber composite material based on Ti/TiB prepared in situ by casting. We used a two-phase titanium alloy VT18U (Ti–6.8Al–4Zr–2.5Sn–1Nb–0.7Mo–0.15Si) as the matrix material for this study. The addition of boron and pure titanium into the titanium alloy led to the formation of 6.5 vol % TiB fibers. Two deformation treatments were used in this research. The first was isothermal forging in two directions (2D) at temperatures of the upper part of the α + β phase field to provide an elongation of TiB fibers along one direction; the second treatment was 3D forging at temperatures of the α + β phase field to ensure the refinement and random orientation of borides for fabricating material with isotropic properties as far as possible. The deformed semifinished samples of the composite materials and of the matrix alloy were annealed. The composite materials demonstrated noticeably higher strength and creep resistance compared to the matrix alloy and retained an acceptable plasticity. The microstructural studies of the fractured samples showed a high adhesion strength of boundaries between the matrix and the TiB fibers, which is retained even with increasing test temperature irrespective of the orientation and morphology of the borides. The failure of the composites begins with the breaking of borides and is followed by the ductile fracture of the matrix material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference New Materials, Ed. by Yu. S. Karabasov (MISIS, Moscow, 2002) [in Russian]. New Materials, Ed. by Yu. S. Karabasov (MISIS, Moscow, 2002) [in Russian].
2.
go back to reference T. M. T. Godfrey, P. S. Goodwin, and C. M. Ward-Close, “Titanium particulate metal matrix composites. Reinforcement, production methods and mechanical properties,” Adv. Eng. Mater. 2, 85–92 (2000).CrossRef T. M. T. Godfrey, P. S. Goodwin, and C. M. Ward-Close, “Titanium particulate metal matrix composites. Reinforcement, production methods and mechanical properties,” Adv. Eng. Mater. 2, 85–92 (2000).CrossRef
3.
go back to reference K. S. R. Chandran, K. B. Panda, and S. S. Sahay, “TiBw-reinforced Ti composites: processing, Properties, application prospects, and research needs,” JOM 56 (5), 42–48 (2004).CrossRef K. S. R. Chandran, K. B. Panda, and S. S. Sahay, “TiBw-reinforced Ti composites: processing, Properties, application prospects, and research needs,” JOM 56 (5), 42–48 (2004).CrossRef
4.
go back to reference M. Gorsse and D. B. Miracle, “Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements,” Acta Mater. 51, 2427–2442 (2003).CrossRef M. Gorsse and D. B. Miracle, “Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements,” Acta Mater. 51, 2427–2442 (2003).CrossRef
5.
go back to reference S. Abkowitz, S. M. Abkowitz, H. Fisher, and P. J. Schwartz, “CermeTi® discontinuously reinforced Ti-matrix composites: Manufacturing, properties, and applications,” JOM 56 (5), 37–41 (2004).CrossRef S. Abkowitz, S. M. Abkowitz, H. Fisher, and P. J. Schwartz, “CermeTi® discontinuously reinforced Ti-matrix composites: Manufacturing, properties, and applications,” JOM 56 (5), 37–41 (2004).CrossRef
6.
go back to reference S. C. Tjong and Y.-W. Mai, “Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites,” Comp. Sci. Technol. 68, 583–601 (2008).CrossRef S. C. Tjong and Y.-W. Mai, “Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites,” Comp. Sci. Technol. 68, 583–601 (2008).CrossRef
7.
go back to reference X. Guo, L. Wang, M. Wang, J. Qin, D. Zhang, and W. Lu, Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites, Acta Mater. 60, 2656–2667 (2012).CrossRef X. Guo, L. Wang, M. Wang, J. Qin, D. Zhang, and W. Lu, Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites, Acta Mater. 60, 2656–2667 (2012).CrossRef
8.
go back to reference C. Zhang, X. Li, S. Zhang, L. Chai, Z. Chen, F. Kong, and Y. Chen, “Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol % (TiBw + TiCp)/Ti composites,” Mater. Sci. Eng., A 684, 645–651 (2017).CrossRef C. Zhang, X. Li, S. Zhang, L. Chai, Z. Chen, F. Kong, and Y. Chen, “Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol % (TiBw + TiCp)/Ti composites,” Mater. Sci. Eng., A 684, 645–651 (2017).CrossRef
9.
go back to reference J. Qu, C. Zhang, S. Zhang, J. Han, L. Chai, Z. Chen, and Y. Chen, “Relationships among reinforcement volume fraction, microstructure and tensile properties of (TiBw + TiCp)/Ti composites after (α + β) forging,” Mater. Sci. Eng., A 701, 16–23 (2017).CrossRef J. Qu, C. Zhang, S. Zhang, J. Han, L. Chai, Z. Chen, and Y. Chen, “Relationships among reinforcement volume fraction, microstructure and tensile properties of (TiBw + TiCp)/Ti composites after (α + β) forging,” Mater. Sci. Eng., A 701, 16–23 (2017).CrossRef
10.
go back to reference D. Hill, R. Banerjee, D. Huber, J. Tikey, and H. L. Fraser, “Formation of equiaxed alpha in TiB reinforced Ti alloy composites,” Scr. Mater. 52, 387–392 (2005).CrossRef D. Hill, R. Banerjee, D. Huber, J. Tikey, and H. L. Fraser, “Formation of equiaxed alpha in TiB reinforced Ti alloy composites,” Scr. Mater. 52, 387–392 (2005).CrossRef
11.
go back to reference C. J. Zhang, F. T. Kong, L. J. Xu, E. T. Zhao, S. L. Xiao, Y. Y. Chen, N. J. Deng, W. Ge, and G. J. Xu, “Temperature dependence of tensile properties and fracture behavior of as rolled TiB/Ti composite sheet,” Mater. Sci. Eng., A 556, 962–969 (2012).CrossRef C. J. Zhang, F. T. Kong, L. J. Xu, E. T. Zhao, S. L. Xiao, Y. Y. Chen, N. J. Deng, W. Ge, and G. J. Xu, “Temperature dependence of tensile properties and fracture behavior of as rolled TiB/Ti composite sheet,” Mater. Sci. Eng., A 556, 962–969 (2012).CrossRef
12.
go back to reference I. Sen, L. Maheshwari, S. Tamirisakandala, D. B. Miracle, and U. Ramamurty, “Micromechanisms of damage in a hypereutectic Ti–6Al–4V–B alloy,” Mater. Sci. Eng., A 518, 162–166 (2009).CrossRef I. Sen, L. Maheshwari, S. Tamirisakandala, D. B. Miracle, and U. Ramamurty, “Micromechanisms of damage in a hypereutectic Ti–6Al–4V–B alloy,” Mater. Sci. Eng., A 518, 162–166 (2009).CrossRef
13.
go back to reference O. M. Ivasishin, R. V. Teliovych, V. G. Ivanchenko, S. Tamirisakandala, and D. B. Miracle, “Processing, microstructure, texture, and tensile properties of the Ti–6Al–4V–1.55B eutectic alloy,” Metall. Mater. Trans. A. 39, 402–416 (2008).CrossRef O. M. Ivasishin, R. V. Teliovych, V. G. Ivanchenko, S. Tamirisakandala, and D. B. Miracle, “Processing, microstructure, texture, and tensile properties of the Ti–6Al–4V–1.55B eutectic alloy,” Metall. Mater. Trans. A. 39, 402–416 (2008).CrossRef
14.
go back to reference V. M. Imayev, R. A. Gaisin, E. R. Gaisina, R. M. Imayev, H.-J. Fecht, and F. Pyczak, “Effect of hot forging on microstructure and tensile properties of Ti–TiB based composites produced by casting,” Mater. Sci. Eng., A 609, 34–41 (2014).CrossRef V. M. Imayev, R. A. Gaisin, E. R. Gaisina, R. M. Imayev, H.-J. Fecht, and F. Pyczak, “Effect of hot forging on microstructure and tensile properties of Ti–TiB based composites produced by casting,” Mater. Sci. Eng., A 609, 34–41 (2014).CrossRef
15.
go back to reference V. M. Imayev, R. A. Gaisin, and R. M. Imayev, “Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si,” Mater. Sci. Eng., A 641, 71–83 (2015).CrossRef V. M. Imayev, R. A. Gaisin, and R. M. Imayev, “Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si,” Mater. Sci. Eng., A 641, 71–83 (2015).CrossRef
16.
go back to reference H. Attar, S. Ehtemam-Haghighi, D. Kent, I. V. Okulov, H. Wendrock, M. Boenisch, A. S. Volegov, M. Calin, J. Eckert, and M. S. Dargusch, “Nanoindentation and wear properties of Ti and Ti–TiB composite materials produced by selective laser melting,” Mater. Sci. Eng., A 688, 20–26 (2017).CrossRef H. Attar, S. Ehtemam-Haghighi, D. Kent, I. V. Okulov, H. Wendrock, M. Boenisch, A. S. Volegov, M. Calin, J. Eckert, and M. S. Dargusch, “Nanoindentation and wear properties of Ti and Ti–TiB composite materials produced by selective laser melting,” Mater. Sci. Eng., A 688, 20–26 (2017).CrossRef
17.
go back to reference M. Ozerov, M. Klimova, A. Kolesnikov, N. Stepanov, and S. Zherebtsov, “Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests,” Mater. Des. 112, 17–26 (2016).CrossRef M. Ozerov, M. Klimova, A. Kolesnikov, N. Stepanov, and S. Zherebtsov, “Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests,” Mater. Des. 112, 17–26 (2016).CrossRef
18.
go back to reference C. Zhang, F. Kong, Sh. Xiao, H. Niu, L. Xu, and Y. Chen, “Evolution of microstructural characteristic and tensile properties during preparation of TiB/Ti composite sheet,” Mater. Des. 36, 505–510 (2012).CrossRef C. Zhang, F. Kong, Sh. Xiao, H. Niu, L. Xu, and Y. Chen, “Evolution of microstructural characteristic and tensile properties during preparation of TiB/Ti composite sheet,” Mater. Des. 36, 505–510 (2012).CrossRef
19.
go back to reference M. J. Koo, J. S. Park, M. K. Park, T. K. Kyung, and S. H. Hong, “Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites,” Scr. Mater. 66, 487–490 (2012).CrossRef M. J. Koo, J. S. Park, M. K. Park, T. K. Kyung, and S. H. Hong, “Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites,” Scr. Mater. 66, 487–490 (2012).CrossRef
20.
go back to reference F. Ma, S. Lu, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, D. Pan, W. Lu, and D. Zhang, “Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field,” J. Alloys Compd. 695, 1515–1522 (2017).CrossRef F. Ma, S. Lu, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, D. Pan, W. Lu, and D. Zhang, “Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field,” J. Alloys Compd. 695, 1515–1522 (2017).CrossRef
21.
go back to reference H. L. Cox and H. L. Br, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).CrossRef H. L. Cox and H. L. Br, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).CrossRef
22.
go back to reference R. A. Gaisin, V. M. Imaev, and R. M. Imaev, “Microstructure and mechanical properties of composite VT25U/TiB, obtained by in situ method using casting and hot forging,” Pis’ma Mater. 7, 186–192 (2017). R. A. Gaisin, V. M. Imaev, and R. M. Imaev, “Microstructure and mechanical properties of composite VT25U/TiB, obtained by in situ method using casting and hot forging,” Pis’ma Mater. 7, 186–192 (2017).
23.
go back to reference R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting,” J/ Alloys Compd. 723, 385–394 (2017).CrossRef R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting,” J/ Alloys Compd. 723, 385–394 (2017).CrossRef
24.
go back to reference V. M. Imayev, R. A. Gaisin, and R. M. Imayev, “Effect of boron addition on formation of a fine-grained microstructure in commercially pure titanium processed by hot compression,” Mater. Sci. Eng., A 639, 691–698 (2015).CrossRef V. M. Imayev, R. A. Gaisin, and R. M. Imayev, “Effect of boron addition on formation of a fine-grained microstructure in commercially pure titanium processed by hot compression,” Mater. Sci. Eng., A 639, 691–698 (2015).CrossRef
25.
go back to reference A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solids 13, 329–350 (1969).CrossRef A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solids 13, 329–350 (1969).CrossRef
26.
go back to reference H. B. Feng, Y. Zhou, D. C. Jia, Q. C. Meng, and J. C. Rao, “Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites,” Cryst. Growth Des. 6, 1626–1630 (2006).CrossRef H. B. Feng, Y. Zhou, D. C. Jia, Q. C. Meng, and J. C. Rao, “Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites,” Cryst. Growth Des. 6, 1626–1630 (2006).CrossRef
Metadata
Title
Microstructure and Mechanical Properties of a Near-α-Titanium-Alloy/TiB Composite Prepared in situ by Casting and Subjected to Deformation and Heat Treatment
Authors
R. A. Gaisin
V. M. Imayev
R. M. Imayev
Publication date
01-09-2018
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2018
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18090041

Other articles of this Issue 9/2018

Physics of Metals and Metallography 9/2018 Go to the issue