Skip to main content
Top
Published in: Physics of Metals and Metallography 9/2018

01-09-2018 | ELECTRICAL AND MAGNETIC PROPERTIES

The Effect of Inhibitors on the Structure and Magnetic Properties of Nanocrystalline Soft Magnetic Alloys

Authors: V. S. Tsepelev, Yu. N. Starodubtsev, V. Ya. Belozerov

Published in: Physics of Metals and Metallography | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study examines the effect of various inhibitors on the structure and magnetic properties of nanocrystalline Fe73.5Cu1M3Si13.5B9 alloys, where M = Nb, W, Mo, V, Cr, or a combination of these elements. The introduction of inhibitors with higher solubilities in α-Fe results in an increase in the lattice parameter of the Fe3Si phase and induces a more marked drop in the initial permeability of the nanocrystalline alloy. A combination of several inhibitor elements is used and this allows an increase in the crystallization temperature and optimization of the core thermal treatment regime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe-based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRef Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe-based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRef
2.
go back to reference Y. Yoshizawa and K. Yamauchi, “Fe-based soft magnetic alloys composed of ultrafine grain structure,” Mater. Trans. JIM 31, 307–314 (1990).CrossRef Y. Yoshizawa and K. Yamauchi, “Fe-based soft magnetic alloys composed of ultrafine grain structure,” Mater. Trans. JIM 31, 307–314 (1990).CrossRef
3.
go back to reference K. Hono, A. Inoue, and T. Sakurai, “Atom probe analysis of Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material,” Appl. Phys. Lett. 58, 2180–2182 (1991).CrossRef K. Hono, A. Inoue, and T. Sakurai, “Atom probe analysis of Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material,” Appl. Phys. Lett. 58, 2180–2182 (1991).CrossRef
4.
go back to reference K. Hono, K. Hiraga, Q. Wang, A. Inoue, and T. Sakurai, “The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material,” Acta Metall. Mater. 40, 2137–2147 (1992).CrossRef K. Hono, K. Hiraga, Q. Wang, A. Inoue, and T. Sakurai, “The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material,” Acta Metall. Mater. 40, 2137–2147 (1992).CrossRef
5.
go back to reference Y. Yoshizawa and K. Yamauchi, “Magnetic properties of Fe–Cu–M–S–B (M = Cr, V, Nb, Ta, W) alloys,” Mater. Sci. Eng., A 133, 176–179 (1991).CrossRef Y. Yoshizawa and K. Yamauchi, “Magnetic properties of Fe–Cu–M–S–B (M = Cr, V, Nb, Ta, W) alloys,” Mater. Sci. Eng., A 133, 176–179 (1991).CrossRef
6.
go back to reference K. Yamauchi and Y. Yoshizawa, “Recent development of nanocrystalline soft magnetic alloys,” Nanostruct. Mater. 6, 247–254 (1995).CrossRef K. Yamauchi and Y. Yoshizawa, “Recent development of nanocrystalline soft magnetic alloys,” Nanostruct. Mater. 6, 247–254 (1995).CrossRef
7.
go back to reference M. Müller, N. Mattern, and U. Kühn, “Correlation between magnetic and structural properties of nanocrystalline soft magnetic alloys,” J. Magn. Magn. Mater. 157–158, 209–210 (1996).CrossRef M. Müller, N. Mattern, and U. Kühn, “Correlation between magnetic and structural properties of nanocrystalline soft magnetic alloys,” J. Magn. Magn. Mater. 157–158, 209–210 (1996).CrossRef
8.
go back to reference M. Müller and N. Mattern, “The influence of refractory element additions on the magnetic properties and on the crystallization behaviour of nanocrystalline soft magnetic Fe–B–S–Cu alloys,” J. Magn. Magn. Mater. 136, 79–87 (1994).CrossRef M. Müller and N. Mattern, “The influence of refractory element additions on the magnetic properties and on the crystallization behaviour of nanocrystalline soft magnetic Fe–B–S–Cu alloys,” J. Magn. Magn. Mater. 136, 79–87 (1994).CrossRef
9.
go back to reference N. Mattern, M. Müller, A. Danzig, and U. Kühn, “Influence of additions on the formation of nanocrystalline Fe3Si by crystallization of amorphous Fe76.5 – xB7Si15.5Cu1Rx,” Nanostruct. Mater. 6, 625–628 (1995).CrossRef N. Mattern, M. Müller, A. Danzig, and U. Kühn, “Influence of additions on the formation of nanocrystalline Fe3Si by crystallization of amorphous Fe76.5 – xB7Si15.5Cu1Rx,” Nanostruct. Mater. 6, 625–628 (1995).CrossRef
10.
go back to reference V. I. Keilin, V. Ya. Belozerov, and Yu. N. Starodubtsev, RF Patent No. 2009258 (1992). V. I. Keilin, V. Ya. Belozerov, and Yu. N. Starodubtsev, RF Patent No. 2009258 (1992).
11.
go back to reference V. Ya. Belozerov, Yu. N. Starodubtsev, and V. I. Keilin, RF Patent No. 2033649 (1992). V. Ya. Belozerov, Yu. N. Starodubtsev, and V. I. Keilin, RF Patent No. 2033649 (1992).
12.
go back to reference Yu. N. Starodubtsev and V. Ya. Belozerov, Magnetic Properties of Amorphous and Nanocrystalline Alloys (Izd-vo Ural. Univ., Yekaterinburg, 2002) [in Russian] Yu. N. Starodubtsev and V. Ya. Belozerov, Magnetic Properties of Amorphous and Nanocrystalline Alloys (Izd-vo Ural. Univ., Yekaterinburg, 2002) [in Russian]
13.
go back to reference W. Lu, B. Yan, and R. Tang, “Structure and soft magnetic properties of V-doped Finemet-type alloys,” J. Alloys Compd. 454, L10–L13 (2008).CrossRef W. Lu, B. Yan, and R. Tang, “Structure and soft magnetic properties of V-doped Finemet-type alloys,” J. Alloys Compd. 454, L10–L13 (2008).CrossRef
14.
go back to reference W. Lu, J. Fan, J. Wang, and B. Yan, “Microstructure and magnetic properties of Fe72.5Cu1 M 2V2Si13.5 (M = Nb, Mo, (Nb,Mo), (MoW)) nanocrystalline alloys,” J. Magn. Magn. Mater. 322, 2935–2937 (2010).CrossRef W. Lu, J. Fan, J. Wang, and B. Yan, “Microstructure and magnetic properties of Fe72.5Cu1 M 2V2Si13.5 (M = Nb, Mo, (Nb,Mo), (MoW)) nanocrystalline alloys,” J. Magn. Magn. Mater. 322, 2935–2937 (2010).CrossRef
15.
go back to reference B. N. Filippov, V. V. Shulika, A. P. Potapov, and N. F. Vil’danova, “Magnetic properties and temperature stability of a molybdenum-doped finemet-type alloy,” Tech. Phys. 59, 373–377 (2014).CrossRef B. N. Filippov, V. V. Shulika, A. P. Potapov, and N. F. Vil’danova, “Magnetic properties and temperature stability of a molybdenum-doped finemet-type alloy,” Tech. Phys. 59, 373–377 (2014).CrossRef
16.
go back to reference V. Tsepelev, Yu. Starodubtsev, V. Konashkov, and V. Belozerov, “Thermomagnetic analysis of soft magnetic nanocrystalline alloys,” J. Alloys Compd. 707, 210–213 (2017).CrossRef V. Tsepelev, Yu. Starodubtsev, V. Konashkov, and V. Belozerov, “Thermomagnetic analysis of soft magnetic nanocrystalline alloys,” J. Alloys Compd. 707, 210–213 (2017).CrossRef
17.
go back to reference A. A. Glazer, V. A. Lukshina, A. P. Potapov, and N. I. Noskova, “Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy obtained from amorphous state by fast crystallization under elevated temperatures,” Fiz. Met. Metalloved., 73, 163–166 (1992). A. A. Glazer, V. A. Lukshina, A. P. Potapov, and N. I. Noskova, “Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy obtained from amorphous state by fast crystallization under elevated temperatures,” Fiz. Met. Metalloved., 73, 163–166 (1992).
18.
go back to reference V. A. Peña Rodríguez, J. Flores Regalado, E. Baggio-Saitovitch, and E. C. Passamani, “Nanocrystallization process in Finemet-type alloys followed by in situ 57Fe Mössbauer spectroscopy,” J. Alloys Compd. 379, 23–27 (2004).CrossRef V. A. Peña Rodríguez, J. Flores Regalado, E. Baggio-Saitovitch, and E. C. Passamani, “Nanocrystallization process in Finemet-type alloys followed by in situ 57Fe Mössbauer spectroscopy,” J. Alloys Compd. 379, 23–27 (2004).CrossRef
19.
go back to reference Y. Nakamura, Alloys and Compounds of d-Elements with Main Group Elements, Landolt-Börnstein New Series, Group III 19, Part C (Springer, Berlin, 1988). Y. Nakamura, Alloys and Compounds of d-Elements with Main Group Elements, Landolt-Börnstein New Series, Group III 19, Part C (Springer, Berlin, 1988).
20.
go back to reference O. Kubaschewski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982). O. Kubaschewski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982).
21.
go back to reference Phase Diagrams of Binary Metallic Systems. Vol. 2, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997) [in Russian]. Phase Diagrams of Binary Metallic Systems. Vol. 2, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997) [in Russian].
22.
go back to reference N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth–Heinemann, Oxford, 1998). N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth–Heinemann, Oxford, 1998).
23.
go back to reference N. Oono, H. Nitta, and Y. Iijima, “Diffusion of niobium in α-iron,” Mater. Trans. 44, 2078–2083 (2003).CrossRef N. Oono, H. Nitta, and Y. Iijima, “Diffusion of niobium in α-iron,” Mater. Trans. 44, 2078–2083 (2003).CrossRef
24.
go back to reference W. Hume-Rothery and G. V. Raynor, The Structure of Metals and Alloys (The Institute of Metals, London, 1962). W. Hume-Rothery and G. V. Raynor, The Structure of Metals and Alloys (The Institute of Metals, London, 1962).
25.
go back to reference G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, 2010). G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, 2010).
26.
go back to reference S. Chikazumi, Physics of Ferromagnetism. Magnetic Characteristics and Engineering Application (Syokabo, Tokyo, 1984; Mir, Moscow, 1987; Oxford University Press, New York, 1997). S. Chikazumi, Physics of Ferromagnetism. Magnetic Characteristics and Engineering Application (Syokabo, Tokyo, 1984; Mir, Moscow, 1987; Oxford University Press, New York, 1997).
27.
go back to reference F. Walz, H. Deusch, and H. Kronmüller, “Investigation of magnetic after-effect in magnetite near Verwey temperature,” Phys. Status Solidi A 53, 519–528 (1979).CrossRef F. Walz, H. Deusch, and H. Kronmüller, “Investigation of magnetic after-effect in magnetite near Verwey temperature,” Phys. Status Solidi A 53, 519–528 (1979).CrossRef
28.
go back to reference K. Hono, D. H. Ping, M. Onhuma, and H. Ondera, “Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy,” Acta Mater. 47, 997–1006 (1999).CrossRef K. Hono, D. H. Ping, M. Onhuma, and H. Ondera, “Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy,” Acta Mater. 47, 997–1006 (1999).CrossRef
29.
go back to reference M. M. Gong, F. Liu, and K. Zhang, “Thermodynamic stability of binary nanocrystalline alloys: analysis of solute and excess vacancy,” Appl. Phys. A: Mater. Sci. Process. 105, 927–934 (2011).CrossRef M. M. Gong, F. Liu, and K. Zhang, “Thermodynamic stability of binary nanocrystalline alloys: analysis of solute and excess vacancy,” Appl. Phys. A: Mater. Sci. Process. 105, 927–934 (2011).CrossRef
30.
go back to reference G. Bonny, N. Castin, J. Bullens, A. Bakaev, T. C. P. Klaver, and D. Terentyev, “On the mobility of vacancy clusters in reduced activation steels: An atomistic study in the Fe–Cr–W model alloy,” J. Phys.: Condens. Matter 25, 315401 (2013). G. Bonny, N. Castin, J. Bullens, A. Bakaev, T. C. P. Klaver, and D. Terentyev, “On the mobility of vacancy clusters in reduced activation steels: An atomistic study in the Fe–Cr–W model alloy,” J. Phys.: Condens. Matter 25, 315401 (2013).
Metadata
Title
The Effect of Inhibitors on the Structure and Magnetic Properties of Nanocrystalline Soft Magnetic Alloys
Authors
V. S. Tsepelev
Yu. N. Starodubtsev
V. Ya. Belozerov
Publication date
01-09-2018
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2018
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18090120

Other articles of this Issue 9/2018

Physics of Metals and Metallography 9/2018 Go to the issue