Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2024

20-04-2023 | Technical Article

Microstructure Evolution and Hardness of Hypereutectic High Chromium Cast Iron after Tempering

Authors: Liu Yawei, Liu Wei, Yang Penghui, Fu Hanguang, Yin Wenhang, Jin Tounan, Chen Zhengyang

Published in: Journal of Materials Engineering and Performance | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the tempering process on the microstructure evolution and hardness of 35 wt.%Cr-4 wt.%C Hypereutectic High Chromium Cast Iron (HHCCI) was studied by means of the scanning electron microscope and transmission electron microscope. The results show that with the increase in tempering temperature, the primary and eutectic carbides of HHCCI have no significant change, and the precipitation of secondary carbides in the matrix increases at first and then decreases. From the TEM analysis results, the secondary carbides after tempering are M23C6, which are rectangular, and with the extension of tempering time, a small part of eutectic carbides decompose and dissolve into the matrix, and the secondary carbides continue to precipitate and grow, and the length can reach several microns to more than 10 microns. With the increase in tempering temperature, the hardness of HHCCI increases, and the hardness tends to decrease when it exceeds 500 °C. After tempering for 6 h, the precipitation of secondary carbides in the matrix reaches the maximum, and the hardness of HHCCI reaches the maximum. After tempering holding time for more than 6 h, the hardness of HHCCI decreases continuously due to the aggregation and growth of secondary carbides.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Wang, X. Ji, H. Fan, H.S. Yang, H.H. Liu, and B.L. Shen, Effects of High Temperature and Cryogenic Treatment on the Microstructure and Abrasion Resistance of a High Chromium Cast Iron, J. Mater. Process. Technol., 2009, 209(7), p 3236–3240.CrossRef J. Wang, X. Ji, H. Fan, H.S. Yang, H.H. Liu, and B.L. Shen, Effects of High Temperature and Cryogenic Treatment on the Microstructure and Abrasion Resistance of a High Chromium Cast Iron, J. Mater. Process. Technol., 2009, 209(7), p 3236–3240.CrossRef
2.
go back to reference Q.H. Cen, H.B. Zhang, and H.G. Fu, Effect of Heat Treatment on Structure and Wear Resistance of High Chromium Cast Steel Containing Boron, J. Iron Steel Res. Int., 2014, 21(5), p 532–538.CrossRef Q.H. Cen, H.B. Zhang, and H.G. Fu, Effect of Heat Treatment on Structure and Wear Resistance of High Chromium Cast Steel Containing Boron, J. Iron Steel Res. Int., 2014, 21(5), p 532–538.CrossRef
3.
go back to reference X.H. Zhi, J.D. Xing, H.G. Fu, and M. Yi, Effect of Titanium on the As-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Mater. Charact., 2008, 59(9), p 1221–1226.CrossRef X.H. Zhi, J.D. Xing, H.G. Fu, and M. Yi, Effect of Titanium on the As-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Mater. Charact., 2008, 59(9), p 1221–1226.CrossRef
4.
go back to reference N. Barnes, S. Clark, S. Seetharaman, and P.F. Mendez, Growth Mechanism of Primary Needles During the Solidification of Chromium Carbide Overlays, Acta Mater., 2018, 151, p 356–365.CrossRef N. Barnes, S. Clark, S. Seetharaman, and P.F. Mendez, Growth Mechanism of Primary Needles During the Solidification of Chromium Carbide Overlays, Acta Mater., 2018, 151, p 356–365.CrossRef
5.
go back to reference Z.Y. Zhao, R.B. Song, Y.C. Zhang, P. Yu, and Y. Pei, Co-orientation Relationship between Secondary Carbides and Adjacent Ferrite after Quenching and Tempering in High Chromium Cast Iron, Vacuum, 2021, 184, p 109911.CrossRef Z.Y. Zhao, R.B. Song, Y.C. Zhang, P. Yu, and Y. Pei, Co-orientation Relationship between Secondary Carbides and Adjacent Ferrite after Quenching and Tempering in High Chromium Cast Iron, Vacuum, 2021, 184, p 109911.CrossRef
6.
go back to reference Y.C. Li, P. Li, K. Wang, H.Z. Li, M.Y. Gong, and W.P. Tong, Microstructure and Mechanical Properties of a Mo Alloyed High Chromium Cast Iron After Different Heat Treatments, Vacuum, 2018, 156, p 59–67.CrossRef Y.C. Li, P. Li, K. Wang, H.Z. Li, M.Y. Gong, and W.P. Tong, Microstructure and Mechanical Properties of a Mo Alloyed High Chromium Cast Iron After Different Heat Treatments, Vacuum, 2018, 156, p 59–67.CrossRef
7.
go back to reference M.A. Guitar, S. Suárez, O. Prat, M. Duarte Guigou, V. Gari, G. Pereira, and F. Mücklich, High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties, J. Mater. Eng. Perform., 2018, 27(8), p 3877–3885.CrossRef M.A. Guitar, S. Suárez, O. Prat, M. Duarte Guigou, V. Gari, G. Pereira, and F. Mücklich, High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties, J. Mater. Eng. Perform., 2018, 27(8), p 3877–3885.CrossRef
8.
go back to reference A.S. Jain, H.W. Chang, X.H. Tang, B. Hinckley, and M.X. Zhang, Refinement of Primary Carbides in Hypereutectic High-Chromium Cast Irons: a review, J. Mater. Sci., 2021, 56(2), p 999–1038.CrossRef A.S. Jain, H.W. Chang, X.H. Tang, B. Hinckley, and M.X. Zhang, Refinement of Primary Carbides in Hypereutectic High-Chromium Cast Irons: a review, J. Mater. Sci., 2021, 56(2), p 999–1038.CrossRef
9.
go back to reference L. Lu, H. Soda, and A. Mclean, Microstructure and Mechanical Properties of Fe–Cr–C Eutectic Composites, Mater. Sci. Eng. A., 2003, 347(1), p 214–222.CrossRef L. Lu, H. Soda, and A. Mclean, Microstructure and Mechanical Properties of Fe–Cr–C Eutectic Composites, Mater. Sci. Eng. A., 2003, 347(1), p 214–222.CrossRef
10.
go back to reference Q. Guo, H.G. Fu, X.Y. Guo, Z.G. Xing, and J. Lin, Microstructure and Properties of Modified As-Cast Hypereutectic High Chromium Cast Iron, Materialwiss. Werkstofftech., 2022, 2, p 53. Q. Guo, H.G. Fu, X.Y. Guo, Z.G. Xing, and J. Lin, Microstructure and Properties of Modified As-Cast Hypereutectic High Chromium Cast Iron, Materialwiss. Werkstofftech., 2022, 2, p 53.
11.
go back to reference S. Zhou, Y. Shen, H. Zhang, and D. Chen, Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron, Chin. J. Mech. Eng., 2015, 28(1), p 140–147.CrossRef S. Zhou, Y. Shen, H. Zhang, and D. Chen, Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron, Chin. J. Mech. Eng., 2015, 28(1), p 140–147.CrossRef
12.
go back to reference S. Inthidech, K. Boonmak, P. Sricharoenchai, N. Sasaguri, and Y. Matsubara, Effect of Repeated Tempering on Hardness and Retained Austenite of High Chromium Cast Iron Containing Molybdenum, Mater. Trans., 2010, 51(7), p 1264–1271.CrossRef S. Inthidech, K. Boonmak, P. Sricharoenchai, N. Sasaguri, and Y. Matsubara, Effect of Repeated Tempering on Hardness and Retained Austenite of High Chromium Cast Iron Containing Molybdenum, Mater. Trans., 2010, 51(7), p 1264–1271.CrossRef
13.
go back to reference G.P. Alejandro, A.L. Juan, Á.A. Florentino, and G.D. Ana, Improvement of Impact Toughness and Abrasion Resistance of a 3C–25Cr-0.5Mo Alloy Using a Design of Experiment Statistical Technique: Microstructural Correlations after Heat Treatments, Metals, 2021, 11(4), p 595.CrossRef G.P. Alejandro, A.L. Juan, Á.A. Florentino, and G.D. Ana, Improvement of Impact Toughness and Abrasion Resistance of a 3C–25Cr-0.5Mo Alloy Using a Design of Experiment Statistical Technique: Microstructural Correlations after Heat Treatments, Metals, 2021, 11(4), p 595.CrossRef
14.
go back to reference A.F. Farah, O.R. Crnkovic, and L.C.F. Canale, Heat Treatment in High Cr White Cast Iron Nb Alloy, J. Mater. Eng. Perform., 2001, 10(1), p 42–45.CrossRef A.F. Farah, O.R. Crnkovic, and L.C.F. Canale, Heat Treatment in High Cr White Cast Iron Nb Alloy, J. Mater. Eng. Perform., 2001, 10(1), p 42–45.CrossRef
15.
go back to reference K.K. Singh, R.S. Verma, and G.M.D. Murty, Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy, J. Mater. Eng. Perform., 2009, 18(4), p 438–440.CrossRef K.K. Singh, R.S. Verma, and G.M.D. Murty, Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy, J. Mater. Eng. Perform., 2009, 18(4), p 438–440.CrossRef
16.
go back to reference Z.Y. Chen, Q. Guo, H.G. Fu, and X.H. Zhi, Effect of Heat Treatment on Microstructure and Properties of Modified Hypereutectic High Chromium Cast Iron, Mater. Test., 2022, 64(1), p 33–54.CrossRef Z.Y. Chen, Q. Guo, H.G. Fu, and X.H. Zhi, Effect of Heat Treatment on Microstructure and Properties of Modified Hypereutectic High Chromium Cast Iron, Mater. Test., 2022, 64(1), p 33–54.CrossRef
17.
go back to reference A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds, and J.T.H. Pearce, Microstructural and Crystallographical Study of Carbides in 30wt.%Cr Cast Irons, Acta Mater., 2005, 53(15), p 4143–4154.CrossRef A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds, and J.T.H. Pearce, Microstructural and Crystallographical Study of Carbides in 30wt.%Cr Cast Irons, Acta Mater., 2005, 53(15), p 4143–4154.CrossRef
18.
go back to reference J.J. Hao, J. Chen, and P.D. Han, Solid Phase Decarburization Kinetics of High-Carbon Ferrochrome Powders in the Microwave Field, Steel Res. Int., 2014, 85(3), p 461–465.CrossRef J.J. Hao, J. Chen, and P.D. Han, Solid Phase Decarburization Kinetics of High-Carbon Ferrochrome Powders in the Microwave Field, Steel Res. Int., 2014, 85(3), p 461–465.CrossRef
19.
go back to reference K. Weber, D. Regener, H. Mehner, and M. Menzel, Characterization of the Microstructure of High-Chromium Cast Irons Using Mossbauer Spectroscopy, Mater. Charact., 2001, 46(5), p 399–406.CrossRef K. Weber, D. Regener, H. Mehner, and M. Menzel, Characterization of the Microstructure of High-Chromium Cast Irons Using Mossbauer Spectroscopy, Mater. Charact., 2001, 46(5), p 399–406.CrossRef
20.
go back to reference G.M. Agustina, S. Anna, S. Sebastián, B. Dominik, G.M. Duarte, and M. Frank, Secondary Carbides in High Chromium Cast Irons: An Alternative Approach to Their Morphological and Spatial Distribution Characterization, Mater. Charact., 2018, 144, p 621–630.CrossRef G.M. Agustina, S. Anna, S. Sebastián, B. Dominik, G.M. Duarte, and M. Frank, Secondary Carbides in High Chromium Cast Irons: An Alternative Approach to Their Morphological and Spatial Distribution Characterization, Mater. Charact., 2018, 144, p 621–630.CrossRef
21.
go back to reference G. Powell and G. Laird, Structure, Nucleation, Growth and Morphology of Secondary Carbides in High Chromium and Cr-Ni White Cast Irons, J. Mater. Sci., 1992, 27(1), p 29–35.CrossRef G. Powell and G. Laird, Structure, Nucleation, Growth and Morphology of Secondary Carbides in High Chromium and Cr-Ni White Cast Irons, J. Mater. Sci., 1992, 27(1), p 29–35.CrossRef
22.
go back to reference A. Wiengmoon, J.T.H. Pearce, S. Nusen, and T. Chairuangsri, Electron Microscopy Study of Carbides Precipitated During Destabilization and Tempering Heat Treatments of 25 wt.%Cr-07 wt.%Mo High Chromium Cast Irons, Micron, 2021, 143, p 103025.CrossRefPubMed A. Wiengmoon, J.T.H. Pearce, S. Nusen, and T. Chairuangsri, Electron Microscopy Study of Carbides Precipitated During Destabilization and Tempering Heat Treatments of 25 wt.%Cr-07 wt.%Mo High Chromium Cast Irons, Micron, 2021, 143, p 103025.CrossRefPubMed
23.
go back to reference J. Guo, L. Liu, Y. Feng, S. Liu, X. Ren, and Q. Yang, Crystallographic Characterizations of Eutectic and Secondary Carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C Alloy, Met. Mater. Int., 2017, 23(2), p 313–319.CrossRef J. Guo, L. Liu, Y. Feng, S. Liu, X. Ren, and Q. Yang, Crystallographic Characterizations of Eutectic and Secondary Carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C Alloy, Met. Mater. Int., 2017, 23(2), p 313–319.CrossRef
24.
go back to reference C.M. Lin, H.H. Lai, J.C. Kuo, and W. Wu, Effect of Carbon Content on Solidification Behaviors and Morphological Characteristics of the Constituent Phases in Cr-Fe-C Alloys, Mater. Charact., 2011, 62(12), p 1124–1133.CrossRef C.M. Lin, H.H. Lai, J.C. Kuo, and W. Wu, Effect of Carbon Content on Solidification Behaviors and Morphological Characteristics of the Constituent Phases in Cr-Fe-C Alloys, Mater. Charact., 2011, 62(12), p 1124–1133.CrossRef
25.
go back to reference W. Yong, Y.L. Mei, B. Han, H. Tao, and Y.C. Yi, Influence of Secondary Carbides Precipitation and Transformation on the Secondary Hardening of Laser Melted High Chromium Steel, J. Mater. Sci., 2010, 45(13), p 3442–3447.CrossRef W. Yong, Y.L. Mei, B. Han, H. Tao, and Y.C. Yi, Influence of Secondary Carbides Precipitation and Transformation on the Secondary Hardening of Laser Melted High Chromium Steel, J. Mater. Sci., 2010, 45(13), p 3442–3447.CrossRef
26.
go back to reference S. Imurai, C. Thanachayanont, J.T.H. Pearce, K. Tsuda, and T. Chairuangsri, Effects of Mo on Microstructure of As-Cast 28 wt.%Cr-2.6 wt.%C-(0-10) wt.%Mo Irons, Mater. Charact., 2014, 90, p 99–112.CrossRef S. Imurai, C. Thanachayanont, J.T.H. Pearce, K. Tsuda, and T. Chairuangsri, Effects of Mo on Microstructure of As-Cast 28 wt.%Cr-2.6 wt.%C-(0-10) wt.%Mo Irons, Mater. Charact., 2014, 90, p 99–112.CrossRef
27.
go back to reference H.G. Fu, Effect of Tempering on The Structure and Property of Rich Chromium Cast Iron, Heat Treat. Met., 1994, 12, p 7–9. H.G. Fu, Effect of Tempering on The Structure and Property of Rich Chromium Cast Iron, Heat Treat. Met., 1994, 12, p 7–9.
Metadata
Title
Microstructure Evolution and Hardness of Hypereutectic High Chromium Cast Iron after Tempering
Authors
Liu Yawei
Liu Wei
Yang Penghui
Fu Hanguang
Yin Wenhang
Jin Tounan
Chen Zhengyang
Publication date
20-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08197-6

Other articles of this Issue 6/2024

Journal of Materials Engineering and Performance 6/2024 Go to the issue

Premium Partners