Skip to main content
Top
Published in: Advances in Manufacturing 1/2018

27-02-2018

Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase-field modeling

Authors: Jyotirmoy Nandy, Hrushikesh Sarangi, Seshadev Sahoo

Published in: Advances in Manufacturing | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct metal laser sintering (DMLS) has evolved as a popular technique in additive manufacturing, which produces metallic parts layer-by-layer by the application of laser power. DMLS is a rapid manufacturing process, and the properties of the build material depend on the sintering mechanism as well as the microstructure of the build material. Thus, the prediction of part microstructures during the process may be a key factor for process optimization. In addition, the process parameters play a crucial role in the microstructure evolution, and need to be controlled effectively. In this study, the microstructure evolution of Al-Si-10Mg alloy in DMLS process is studied with the help of the phase field modeling. A MATLAB code is used to solve the phase field equations, where the simulation parameters include temperature gradient, laser power and scan speed. From the simulation result, it is found that the temperature gradient plays a significant role in the evolution of microstructure with different process parameters. In a single-seed simulation, the growth of the dendritic structure increases with the increase in the temperature gradient. When considering multiple seeds, the increasing in temperature gradients leads to the formation of finer dendrites; however, with increasing time, the dendrites join and grain growth are seen to be controlled at the interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Noorani R (2006) Rapid prototyping: principles and applications. Wiley, London Noorani R (2006) Rapid prototyping: principles and applications. Wiley, London
2.
go back to reference Chua CK, Chou SM, Lin SC et al (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630CrossRef Chua CK, Chou SM, Lin SC et al (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630CrossRef
3.
go back to reference Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds part I: microstructural characterization. Metall Mater Trans 35(6):1861–1867CrossRef Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds part I: microstructural characterization. Metall Mater Trans 35(6):1861–1867CrossRef
4.
go back to reference Brandl E, Baufeld B, Leyens C et al (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Proc 5:595–606CrossRef Brandl E, Baufeld B, Leyens C et al (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Proc 5:595–606CrossRef
5.
go back to reference Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A 39(12):2914–2922CrossRef Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A 39(12):2914–2922CrossRef
6.
go back to reference Thompson SM, Bian L, Shamsaei N et al (2015) An overview of direct laser deposition for additive manufacturing part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62CrossRef Thompson SM, Bian L, Shamsaei N et al (2015) An overview of direct laser deposition for additive manufacturing part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62CrossRef
7.
go back to reference Shamsaei N, Yadollahi A, Bian L et al (2015) An overview of direct laser deposition for additive manufacturing part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35CrossRef Shamsaei N, Yadollahi A, Bian L et al (2015) An overview of direct laser deposition for additive manufacturing part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35CrossRef
8.
go back to reference Cabrini M, Lorenzi S, Pastore T et al (2016) Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering. J Mater Process Technol 231:326–335CrossRef Cabrini M, Lorenzi S, Pastore T et al (2016) Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering. J Mater Process Technol 231:326–335CrossRef
10.
go back to reference Das P, Dutta P (2016) Phase field modeling of microstructure evolution and ripening driven grain growth during cooling slope processing of A356 Al alloy. Comput Mater Sci 125:8–19CrossRef Das P, Dutta P (2016) Phase field modeling of microstructure evolution and ripening driven grain growth during cooling slope processing of A356 Al alloy. Comput Mater Sci 125:8–19CrossRef
11.
go back to reference Du L, Zhang R (2014) Phase field simulation of dendrite growth with boundary heat flux. Integr Mater Manuf Innov 3(1):1–5CrossRef Du L, Zhang R (2014) Phase field simulation of dendrite growth with boundary heat flux. Integr Mater Manuf Innov 3(1):1–5CrossRef
12.
go back to reference Kazaryan A, Wang Y, Dregia SA et al (2000) Generalized phase-field model for computer simulation of grain growth in anisotropic systems. Phys Rev B 61(21):14275CrossRef Kazaryan A, Wang Y, Dregia SA et al (2000) Generalized phase-field model for computer simulation of grain growth in anisotropic systems. Phys Rev B 61(21):14275CrossRef
13.
go back to reference Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311CrossRef Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311CrossRef
14.
go back to reference Sciarra G (2016) Phase field modeling of partially saturated deformable porous media. J Mech Phys Solids 94:230–256MathSciNetCrossRef Sciarra G (2016) Phase field modeling of partially saturated deformable porous media. J Mech Phys Solids 94:230–256MathSciNetCrossRef
15.
go back to reference Gránásy L, Pusztai T, Warren JA (2004) Modelling polycrystalline solidification using phase field theory. J Phys Condens Matter 16(41):R1205CrossRef Gránásy L, Pusztai T, Warren JA (2004) Modelling polycrystalline solidification using phase field theory. J Phys Condens Matter 16(41):R1205CrossRef
16.
go back to reference Ganeriwala R, Zohdi TI (2014) Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Proc CIRP 14:299–304CrossRef Ganeriwala R, Zohdi TI (2014) Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Proc CIRP 14:299–304CrossRef
17.
go back to reference Sahoo S, Chou K (2016) Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit Manuf 9:14–24CrossRef Sahoo S, Chou K (2016) Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit Manuf 9:14–24CrossRef
18.
go back to reference Sahoo S (2014) Microstructure simulation of Ti-6Al-4V biomaterial produced by electron beam additive manufacturing process. Int J Nano Biomater 5(4):228–235CrossRef Sahoo S (2014) Microstructure simulation of Ti-6Al-4V biomaterial produced by electron beam additive manufacturing process. Int J Nano Biomater 5(4):228–235CrossRef
19.
go back to reference Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87(11):115701CrossRef Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87(11):115701CrossRef
20.
go back to reference Tan W, Bailey NS, Shin YC (2011) A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Comput Mater Sci 50(9):2573–2585CrossRef Tan W, Bailey NS, Shin YC (2011) A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Comput Mater Sci 50(9):2573–2585CrossRef
21.
go back to reference Fallah V, Amoorezaei M, Provatas N et al (2012) Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys. Acta Mater 60(4):1633–1646CrossRef Fallah V, Amoorezaei M, Provatas N et al (2012) Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys. Acta Mater 60(4):1633–1646CrossRef
22.
go back to reference Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67(5):1176–1182CrossRef Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67(5):1176–1182CrossRef
23.
go back to reference Biswas S, Schwen D, Singh J et al (2016) A study of the evolution of microstructure and consolidation kinetics during sintering using a phase field modeling based approach. Extreme Mech Lett 7:78–89CrossRef Biswas S, Schwen D, Singh J et al (2016) A study of the evolution of microstructure and consolidation kinetics during sintering using a phase field modeling based approach. Extreme Mech Lett 7:78–89CrossRef
24.
go back to reference Holfelder P, Lu JM, Krempaszky C et al (2016) A phase field approach for modeling melting and re-solidification of Ti-6Al-4V during selective laser melting. Key Eng Mater 704:241–250CrossRef Holfelder P, Lu JM, Krempaszky C et al (2016) A phase field approach for modeling melting and re-solidification of Ti-6Al-4V during selective laser melting. Key Eng Mater 704:241–250CrossRef
25.
go back to reference Hang K, Mastorakos I (2017) Phase field crystal simulation of grain growth in BCC metals during additive manufacturing. MRS Adv 2(16):887–896CrossRef Hang K, Mastorakos I (2017) Phase field crystal simulation of grain growth in BCC metals during additive manufacturing. MRS Adv 2(16):887–896CrossRef
26.
go back to reference Kundin J, Mushongera L, Emmerich H (2015) Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 super alloy. Acta Mater 95:343–356CrossRef Kundin J, Mushongera L, Emmerich H (2015) Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 super alloy. Acta Mater 95:343–356CrossRef
27.
go back to reference Nandy J, Sarangi H, Sahoo S (2017) Modeling of microstructure evolution in direct metal laser sintering: a phase field approach. Mater Sci Eng 178:1–8 Nandy J, Sarangi H, Sahoo S (2017) Modeling of microstructure evolution in direct metal laser sintering: a phase field approach. Mater Sci Eng 178:1–8
Metadata
Title
Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase-field modeling
Authors
Jyotirmoy Nandy
Hrushikesh Sarangi
Seshadev Sahoo
Publication date
27-02-2018
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 1/2018
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-018-0213-1

Other articles of this Issue 1/2018

Advances in Manufacturing 1/2018 Go to the issue

Premium Partners