Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Microwave-Responsive Nanomaterials for Catalysis

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microwave heating is a powerful and non-conventional energy source for heterogeneous catalytic reactions, which has attracted considerable attention during the past decades. With the presence of microwave-responsive catalysts, microwave can selectively heat the designed catalyst surface, and expedite the reaction rate at catalyst/solvent interface. This chapter strives to extensively review the recent work on microwave-responsive catalysts and their roles in heterogeneous catalytic reactions. The fundamental mechanism of microwave heating is illustrated to explain its functions in the catalytic reactions. The working principle of microwave-responsive catalyst and related evaluation methods are discussed in this chapter. Additionally, the advantages of microwave-responsive catalysts for specific reactions have been categorized and reviewed. At last, a few different strategies to enhance microwave thermal effects have been summarized. It is concluded that developing microwave-responsive catalysts is a practical method to expedite reaction rate, enhance energy-efficiency, and improve product quality. Therefore, designing microwave-responsive catalysts could be an effective strategy for highly efficient reactions and future industrial-scale applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)CrossRef S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)CrossRef
2.
go back to reference D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent. Chem. Rev. 107(6), 2563–2591 (2007)CrossRef D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent. Chem. Rev. 107(6), 2563–2591 (2007)CrossRef
3.
go back to reference C. Si, J. Wu, Y. Wang, Y. Zhang, X. Shang, Drying of low-rank coals: a review of fluidized bed technologies. Drying Technol. 33(3), 277–287 (2015)CrossRef C. Si, J. Wu, Y. Wang, Y. Zhang, X. Shang, Drying of low-rank coals: a review of fluidized bed technologies. Drying Technol. 33(3), 277–287 (2015)CrossRef
4.
go back to reference F.J. Barba, Z. Zhu, M. Koubaa, A.S. Sant’Ana, V. Orlien, Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Technol. 49, 96–109 (2016)CrossRef F.J. Barba, Z. Zhu, M. Koubaa, A.S. Sant’Ana, V. Orlien, Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Technol. 49, 96–109 (2016)CrossRef
5.
go back to reference F. Mushtaq, R. Mat, F.N. Ani, A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 39, 555–574 (2014)CrossRef F. Mushtaq, R. Mat, F.N. Ani, A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 39, 555–574 (2014)CrossRef
6.
go back to reference S. Nomanbhay, M. Ong, A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2), 57 (2017)CrossRef S. Nomanbhay, M. Ong, A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2), 57 (2017)CrossRef
7.
go back to reference F. Motasemi, M.T. Afzal, A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 28, 317–330 (2013)CrossRef F. Motasemi, M.T. Afzal, A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 28, 317–330 (2013)CrossRef
8.
go back to reference R.N. Baig, R.S. Varma, Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41(4), 1559–1584 (2012)CrossRef R.N. Baig, R.S. Varma, Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41(4), 1559–1584 (2012)CrossRef
9.
go back to reference N. Remya, J.-G. Lin, Current status of microwave application in wastewater treatment—a review. Chem. Eng. J. 166(3), 797–813 (2011)CrossRef N. Remya, J.-G. Lin, Current status of microwave application in wastewater treatment—a review. Chem. Eng. J. 166(3), 797–813 (2011)CrossRef
10.
go back to reference A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 34(2), 164–178 (2005)CrossRef A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 34(2), 164–178 (2005)CrossRef
11.
go back to reference A.K. Datta, P.M. Davidson, Microwave and radio frequency processing. J. Food Sci. 65, 32–41 (2000)CrossRef A.K. Datta, P.M. Davidson, Microwave and radio frequency processing. J. Food Sci. 65, 32–41 (2000)CrossRef
12.
go back to reference M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494(1–2), 175–189 (2010)CrossRef M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494(1–2), 175–189 (2010)CrossRef
13.
go back to reference E. Thostenson, T.-W. Chou, Microwave processing: fundamentals and applications. Compos. A 30(9), 1055–1071 (1999)CrossRef E. Thostenson, T.-W. Chou, Microwave processing: fundamentals and applications. Compos. A 30(9), 1055–1071 (1999)CrossRef
14.
go back to reference J.M. Osepchuk, A history of microwave heating applications. IEEE Trans. Microw. Theory Tech. 32(9), 1200–1224 (1984)CrossRef J.M. Osepchuk, A history of microwave heating applications. IEEE Trans. Microw. Theory Tech. 32(9), 1200–1224 (1984)CrossRef
15.
go back to reference R. Kelly, N. Rowson, Microwave reduction of oxidised ilmenite concentrates. Miner. Eng. 8(11), 1427–1438 (1995)CrossRef R. Kelly, N. Rowson, Microwave reduction of oxidised ilmenite concentrates. Miner. Eng. 8(11), 1427–1438 (1995)CrossRef
16.
go back to reference H. Kingston, L. Jassie, Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal. Chem. 58(12), 2534–2541 (1986)CrossRef H. Kingston, L. Jassie, Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal. Chem. 58(12), 2534–2541 (1986)CrossRef
17.
go back to reference F. Içier, T. Baysal, Dielectrical properties of food materials-1: factors affecting and industrial uses. Crit. Rev. Food Sci. Nutr. 44(6), 465–471 (2004)CrossRef F. Içier, T. Baysal, Dielectrical properties of food materials-1: factors affecting and industrial uses. Crit. Rev. Food Sci. Nutr. 44(6), 465–471 (2004)CrossRef
18.
go back to reference R.V. Decareau, Microwaves in the Food Processing Industry (Academic Press, London, 1985) R.V. Decareau, Microwaves in the Food Processing Industry (Academic Press, London, 1985)
19.
go back to reference D.D. Dinčov, K.A. Parrott, K.A. Pericleous, Heat and mass transfer in two-phase porous materials under intensive microwave heating. J. Food Eng. 65(3), 403–412 (2004)CrossRef D.D. Dinčov, K.A. Parrott, K.A. Pericleous, Heat and mass transfer in two-phase porous materials under intensive microwave heating. J. Food Eng. 65(3), 403–412 (2004)CrossRef
20.
go back to reference A.A. Metaxas, R.J. Meredith, Industrial Microwave Heating (IET, 1983) A.A. Metaxas, R.J. Meredith, Industrial Microwave Heating (IET, 1983)
21.
go back to reference C. González-Arellano, J.M. Campelo, D.J. Macquarrie, J.M. Marinas, A.A. Romero, R. Luque, Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem Chem. Sustain. Energy Mater. 1(8–9), 746–750 (2008) C. González-Arellano, J.M. Campelo, D.J. Macquarrie, J.M. Marinas, A.A. Romero, R. Luque, Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem Chem. Sustain. Energy Mater. 1(8–9), 746–750 (2008)
22.
go back to reference S.S. Lam, H.A. Chase, A review on waste to energy processes using microwave pyrolysis. Energies 5(10), 4209–4232 (2012)CrossRef S.S. Lam, H.A. Chase, A review on waste to energy processes using microwave pyrolysis. Energies 5(10), 4209–4232 (2012)CrossRef
23.
go back to reference T. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion. Appl. Catal. B 220, 581–588 (2018)CrossRef T. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion. Appl. Catal. B 220, 581–588 (2018)CrossRef
24.
go back to reference T. Lieu, S. Yusup, M. Moniruzzaman, Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra seed oil. Bioresour. Technol. 211, 248–256 (2016)CrossRef T. Lieu, S. Yusup, M. Moniruzzaman, Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra seed oil. Bioresour. Technol. 211, 248–256 (2016)CrossRef
25.
go back to reference R. Babu, S.-H. Kim, A.C. Kathalikkattil, R.R. Kuruppathparambil, D.W. Kim, S.J. Cho, D.-W. Park, Aqueous microwave-assisted synthesis of non-interpenetrated metal-organic framework for room temperature cycloaddition of CO2 and epoxides. Appl. Catal. A 544, 126–136 (2017)CrossRef R. Babu, S.-H. Kim, A.C. Kathalikkattil, R.R. Kuruppathparambil, D.W. Kim, S.J. Cho, D.-W. Park, Aqueous microwave-assisted synthesis of non-interpenetrated metal-organic framework for room temperature cycloaddition of CO2 and epoxides. Appl. Catal. A 544, 126–136 (2017)CrossRef
26.
go back to reference R. Bernini, E. Mincione, M. Barontini, G. Provenzano, L. Setti, Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63(39), 9663–9667 (2007)CrossRef R. Bernini, E. Mincione, M. Barontini, G. Provenzano, L. Setti, Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63(39), 9663–9667 (2007)CrossRef
27.
go back to reference J. Jacob, L. Chia, F. Boey, Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci. 30(21), 5321–5327 (1995)CrossRef J. Jacob, L. Chia, F. Boey, Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci. 30(21), 5321–5327 (1995)CrossRef
28.
go back to reference D.R. Baghurst, D.M.P. Mingos, Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun. (9), 674–677 (1992) D.R. Baghurst, D.M.P. Mingos, Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun. (9), 674–677 (1992)
29.
go back to reference D. Bogdal, M. Lukasiewicz, J. Pielichowski, A. Miciak, S. Bednarz, Microwave-assisted oxidation of alcohols using MagtrieveTM. Tetrahedron 59(5), 649–653 (2003)CrossRef D. Bogdal, M. Lukasiewicz, J. Pielichowski, A. Miciak, S. Bednarz, Microwave-assisted oxidation of alcohols using MagtrieveTM. Tetrahedron 59(5), 649–653 (2003)CrossRef
30.
go back to reference H. Will, P. Scholz, B. Ondruschka, Microwave-assisted heterogeneous gas-phase catalysis. Chem. Eng. Technol. Ind. Chem. Plant Equipment Process Eng. Biotechnol. 27(2), 113–122 (2004) H. Will, P. Scholz, B. Ondruschka, Microwave-assisted heterogeneous gas-phase catalysis. Chem. Eng. Technol. Ind. Chem. Plant Equipment Process Eng. Biotechnol. 27(2), 113–122 (2004)
31.
go back to reference N. Sharma, U.K. Sharma, E.V. Van der Eycken, Microwave-assisted organic synthesis: overview of recent applications. Green Techn. Org. Synth. Med. Chem. 441–468 (2018) N. Sharma, U.K. Sharma, E.V. Van der Eycken, Microwave-assisted organic synthesis: overview of recent applications. Green Techn. Org. Synth. Med. Chem. 441–468 (2018)
32.
go back to reference S. Horikoshi, A. Osawa, M. Abe, N. Serpone, On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115(46), 23030–23035 (2011)CrossRef S. Horikoshi, A. Osawa, M. Abe, N. Serpone, On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115(46), 23030–23035 (2011)CrossRef
33.
go back to reference X. Zhang, D.O. Hayward, D.M.P. Mingos, Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 11, 975–976 (1999)CrossRef X. Zhang, D.O. Hayward, D.M.P. Mingos, Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 11, 975–976 (1999)CrossRef
34.
go back to reference M. Guler, T. Dogu, D. Varisli, Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system. Appl. Catal. B 219, 173–182 (2017)CrossRef M. Guler, T. Dogu, D. Varisli, Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system. Appl. Catal. B 219, 173–182 (2017)CrossRef
35.
go back to reference A.L. Garcia-Costa, J.A. Zazo, J.J. Rodriguez, J.A. Casas, Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and gamma-alumina. Appl. Catal. B 218, 637–642 (2017)CrossRef A.L. Garcia-Costa, J.A. Zazo, J.J. Rodriguez, J.A. Casas, Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and gamma-alumina. Appl. Catal. B 218, 637–642 (2017)CrossRef
36.
go back to reference S.Y. Liu, L.F. Mei, X.L. Liang, L.B. Liao, G.C. Lv, S.F. Ma, S.Y. Lu, A. Abdelkader, K. Xi, Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl. Mater. Interfaces 10(35), 29467–29475 (2018)CrossRef S.Y. Liu, L.F. Mei, X.L. Liang, L.B. Liao, G.C. Lv, S.F. Ma, S.Y. Lu, A. Abdelkader, K. Xi, Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl. Mater. Interfaces 10(35), 29467–29475 (2018)CrossRef
37.
go back to reference T. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, Enhancing energy efficiency in saccharide–HMF conversion with core/shell structured microwave responsive catalysts. ACS Sustain. Chem. Eng. 5(5), 4352–4358 (2017)CrossRef T. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, Enhancing energy efficiency in saccharide–HMF conversion with core/shell structured microwave responsive catalysts. ACS Sustain. Chem. Eng. 5(5), 4352–4358 (2017)CrossRef
38.
go back to reference T. Chen, C. Fan, One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. J. Porous Mater. 20(5), 1225–1230 (2013)CrossRef T. Chen, C. Fan, One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. J. Porous Mater. 20(5), 1225–1230 (2013)CrossRef
39.
go back to reference S. Horikoshi, T. Minagawa, S. Tsubaki, A. Onda, N. Serpone, Is selective heating of the sulfonic acid catalyst ACSO3H by microwave radiation crucial in the acid hydrolysis of cellulose to glucose in aqueous media? Catalysts 7(8), 231 (2017)CrossRef S. Horikoshi, T. Minagawa, S. Tsubaki, A. Onda, N. Serpone, Is selective heating of the sulfonic acid catalyst ACSO3H by microwave radiation crucial in the acid hydrolysis of cellulose to glucose in aqueous media? Catalysts 7(8), 231 (2017)CrossRef
40.
go back to reference Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, L. Mao, Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem. 12(4), 696–700 (2010)CrossRef Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, L. Mao, Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem. 12(4), 696–700 (2010)CrossRef
41.
go back to reference D. Varisli, C. Korkusuz, T. Dogu, Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts. Appl. Catal. B 201, 370–380 (2017)CrossRef D. Varisli, C. Korkusuz, T. Dogu, Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts. Appl. Catal. B 201, 370–380 (2017)CrossRef
42.
go back to reference T. Ji, R. Tu, L. Li, L. Mu, C. Liu, X. Lu, J. Zhu, Localizing microwave heat by surface polarization of titanate nanostructures for enhanced catalytic reaction efficiency. Appl. Catal. B 227, 266–275 (2018)CrossRef T. Ji, R. Tu, L. Li, L. Mu, C. Liu, X. Lu, J. Zhu, Localizing microwave heat by surface polarization of titanate nanostructures for enhanced catalytic reaction efficiency. Appl. Catal. B 227, 266–275 (2018)CrossRef
43.
go back to reference T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013)CrossRef T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25(47), 6905–6910 (2013)CrossRef
44.
go back to reference J.A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E.G. Calvo, J.M. Bermudez, Microwave heating processes involving carbon materials. Fuel Process. Technol. 91(1), 1–8 (2010)CrossRef J.A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E.G. Calvo, J.M. Bermudez, Microwave heating processes involving carbon materials. Fuel Process. Technol. 91(1), 1–8 (2010)CrossRef
45.
go back to reference N. Mehra, L. Mu, T. Ji, J. Zhu, Chapter 3—Thermal conduction in polymer composites, in Polymer-Based Multifunctional Nanocomposites and Their Applications, ed. by K. Song, C. Liu, J.Z. Guo (Elsevier, Amsterdam, 2019), pp. 77–110CrossRef N. Mehra, L. Mu, T. Ji, J. Zhu, Chapter 3—Thermal conduction in polymer composites, in Polymer-Based Multifunctional Nanocomposites and Their Applications, ed. by K. Song, C. Liu, J.Z. Guo (Elsevier, Amsterdam, 2019), pp. 77–110CrossRef
46.
go back to reference J.E. Omoriyekomwan, A. Tahmasebi, J.L. Yu, Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour. Technol. 207, 188–196 (2016)CrossRef J.E. Omoriyekomwan, A. Tahmasebi, J.L. Yu, Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour. Technol. 207, 188–196 (2016)CrossRef
47.
go back to reference X. Zhang, D.O. Hayward, Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorg. Chim. Acta 359(11), 3421–3433 (2006)CrossRef X. Zhang, D.O. Hayward, Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorg. Chim. Acta 359(11), 3421–3433 (2006)CrossRef
48.
go back to reference C.Y. Cha, D.S. Kim, Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon 39(8), 1159–1166 (2001)CrossRef C.Y. Cha, D.S. Kim, Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon 39(8), 1159–1166 (2001)CrossRef
49.
go back to reference J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006)CrossRef J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006)CrossRef
50.
go back to reference M. Biercuk, M.C. Llaguno, M. Radosavljevic, J. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef M. Biercuk, M.C. Llaguno, M. Radosavljevic, J. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef
51.
go back to reference T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51(14), 1487–1500 (2012)CrossRef T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51(14), 1487–1500 (2012)CrossRef
52.
go back to reference A.D. Chowdhury, N. Agnihotri, A. De, Hydrolysis of sodium borohydride using Ru–Co-PEDOT nanocomposites as catalyst. Chem. Eng. J. 264, 531–537 (2015)CrossRef A.D. Chowdhury, N. Agnihotri, A. De, Hydrolysis of sodium borohydride using Ru–Co-PEDOT nanocomposites as catalyst. Chem. Eng. J. 264, 531–537 (2015)CrossRef
53.
go back to reference B. Mu, A. Wang, One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J. Mater. Chem. A 3(1), 281–289 (2015)CrossRef B. Mu, A. Wang, One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J. Mater. Chem. A 3(1), 281–289 (2015)CrossRef
54.
go back to reference R.K. Pandey, V. Lakshminarayanan, Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J. Phys. Chem. C 113(52), 21596–21603 (2009)CrossRef R.K. Pandey, V. Lakshminarayanan, Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J. Phys. Chem. C 113(52), 21596–21603 (2009)CrossRef
55.
go back to reference S. Guo, S. Dong, E. Wang, Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5(16), 1869–1876 (2009)CrossRef S. Guo, S. Dong, E. Wang, Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5(16), 1869–1876 (2009)CrossRef
56.
go back to reference R. Yuan, H. Wang, T. Ji, L. Mu, L. Chen, Y. Zhu, J. Zhu, Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures. J. Mater. Chem. A 3(38), 19299–19303 (2015)CrossRef R. Yuan, H. Wang, T. Ji, L. Mu, L. Chen, Y. Zhu, J. Zhu, Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures. J. Mater. Chem. A 3(38), 19299–19303 (2015)CrossRef
57.
go back to reference P. Saini, V. Choudhary, B. Singh, R. Mathur, S. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113(2), 919–926 (2009)CrossRef P. Saini, V. Choudhary, B. Singh, R. Mathur, S. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113(2), 919–926 (2009)CrossRef
58.
go back to reference J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill Inc., New York; London, 1999) J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill Inc., New York; London, 1999)
59.
go back to reference A.M. Rodríguez, P. Prieto, A. de la Hoz, Á. Díaz-Ortiz, D.R. Martín, J.I. García, Influence of polarity and activation energy in microwave–assisted organic synthesis (MAOS). ChemistryOpen 4(3), 308–317 (2015)CrossRef A.M. Rodríguez, P. Prieto, A. de la Hoz, Á. Díaz-Ortiz, D.R. Martín, J.I. García, Influence of polarity and activation energy in microwave–assisted organic synthesis (MAOS). ChemistryOpen 4(3), 308–317 (2015)CrossRef
60.
go back to reference C.R. Strauss, R.W. Trainor, Developments in microwave-assisted organic chemistry. Aust. J. Chem. 48(10), 1665–1692 (1995)CrossRef C.R. Strauss, R.W. Trainor, Developments in microwave-assisted organic chemistry. Aust. J. Chem. 48(10), 1665–1692 (1995)CrossRef
61.
go back to reference M. Crosswhite, J. Hunt, T. Southworth, K. Serniak, A. Ferrari, A.E. Stiegman, Development of magnetic nanoparticles as microwave-specific catalysts for the rapid, low-temperature synthesis of formalin solutions. ACS Catal. 3(6), 1318–1323 (2013)CrossRef M. Crosswhite, J. Hunt, T. Southworth, K. Serniak, A. Ferrari, A.E. Stiegman, Development of magnetic nanoparticles as microwave-specific catalysts for the rapid, low-temperature synthesis of formalin solutions. ACS Catal. 3(6), 1318–1323 (2013)CrossRef
62.
go back to reference X.Y. Liu, D. Xu, D.F. Zhang, G.Z. Zhang, L. Zhang, Superior performance of 3D Co-Ni bimetallic oxides for catalytic degradation of organic dye: Investigation on the effect of catalyst morphology and catalytic mechanism. Appl. Catal. B 186, 193–203 (2016)CrossRef X.Y. Liu, D. Xu, D.F. Zhang, G.Z. Zhang, L. Zhang, Superior performance of 3D Co-Ni bimetallic oxides for catalytic degradation of organic dye: Investigation on the effect of catalyst morphology and catalytic mechanism. Appl. Catal. B 186, 193–203 (2016)CrossRef
63.
go back to reference I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 98(1), 171–198 (1998)CrossRef I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 98(1), 171–198 (1998)CrossRef
64.
go back to reference T. Yamase, M.T. Pope, Polyoxometalate Chemistry for Nano-composite Design (Springer Science & Business Media, 2006) T. Yamase, M.T. Pope, Polyoxometalate Chemistry for Nano-composite Design (Springer Science & Business Media, 2006)
65.
go back to reference H. Lv, Y.V. Geletii, C. Zhao, J.W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D.G. Musaev, C.L. Hill, Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41(22), 7572–7589 (2012)CrossRef H. Lv, Y.V. Geletii, C. Zhao, J.W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D.G. Musaev, C.L. Hill, Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41(22), 7572–7589 (2012)CrossRef
66.
go back to reference S. Tsubaki, K. Oono, T. Ueda, A. Onda, K. Yanagisawa, T. Mitani, J. Azuma, Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresour. Technol. 144, 67–73 (2013)CrossRef S. Tsubaki, K. Oono, T. Ueda, A. Onda, K. Yanagisawa, T. Mitani, J. Azuma, Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresour. Technol. 144, 67–73 (2013)CrossRef
67.
go back to reference T. Okuhara, Water-tolerant solid acid catalysts. Chem. Rev. 102(10), 3641–3666 (2002)CrossRef T. Okuhara, Water-tolerant solid acid catalysts. Chem. Rev. 102(10), 3641–3666 (2002)CrossRef
68.
go back to reference P. Lidström, J. Tierney, B. Watheyb, J. Westmana, Microwave assisted organic synthesis: a review. Tetrahedron 57, 9225–9283 (2001)CrossRef P. Lidström, J. Tierney, B. Watheyb, J. Westmana, Microwave assisted organic synthesis: a review. Tetrahedron 57, 9225–9283 (2001)CrossRef
69.
go back to reference X. Zhang, C.S.-M. Lee, D.M.P. Mingos, D.O. Hayward, Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating. Catal. Lett. 88(3–4), 129–139 (2003)CrossRef X. Zhang, C.S.-M. Lee, D.M.P. Mingos, D.O. Hayward, Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating. Catal. Lett. 88(3–4), 129–139 (2003)CrossRef
70.
go back to reference T. Durka, G.D. Stefanidis, T. Van Gerven, A.I. Stankiewicz, Microwave-activated methanol steam reforming for hydrogen production. Int. J. Hydrogen Energy 36(20), 12843–12852 (2011)CrossRef T. Durka, G.D. Stefanidis, T. Van Gerven, A.I. Stankiewicz, Microwave-activated methanol steam reforming for hydrogen production. Int. J. Hydrogen Energy 36(20), 12843–12852 (2011)CrossRef
71.
go back to reference S. Horikoshi, A. Osawa, S. Sakamoto, N. Serpone, Control of microwave-generated hot spots Part IV Control of hot spots on a heterogeneous microwave-absorber catalyst surface by a hybrid internal/external heating method. Chem. Eng. Process. Process Intensif. 69, 52–56 (2013)CrossRef S. Horikoshi, A. Osawa, S. Sakamoto, N. Serpone, Control of microwave-generated hot spots Part IV Control of hot spots on a heterogeneous microwave-absorber catalyst surface by a hybrid internal/external heating method. Chem. Eng. Process. Process Intensif. 69, 52–56 (2013)CrossRef
72.
go back to reference B. Nigrovski, U. Zavyalova, P. Scholz, K. Pollok, M. Müller, B. Ondruschka, Microwave-assisted catalytic oxidative dehydrogenation of ethylbenzene on iron oxide loaded carbon nanotubes. Carbon 46(13), 1678–1686 (2008)CrossRef B. Nigrovski, U. Zavyalova, P. Scholz, K. Pollok, M. Müller, B. Ondruschka, Microwave-assisted catalytic oxidative dehydrogenation of ethylbenzene on iron oxide loaded carbon nanotubes. Carbon 46(13), 1678–1686 (2008)CrossRef
73.
go back to reference U.R. Pillai, E. Sahle-Demessie, R.S. Varma, Hydrodechlorination of chlorinated benzenes in a continuous microwave reactor. Green Chem. 6(6), 295–298 (2004)CrossRef U.R. Pillai, E. Sahle-Demessie, R.S. Varma, Hydrodechlorination of chlorinated benzenes in a continuous microwave reactor. Green Chem. 6(6), 295–298 (2004)CrossRef
74.
go back to reference B. Fidalgo, A. Dominguez, J.J. Pis, J.A. Menendez, Microwave-assisted dry reforming of methane. Int. J. Hydrogen Energy 33(16), 4337–4344 (2008)CrossRef B. Fidalgo, A. Dominguez, J.J. Pis, J.A. Menendez, Microwave-assisted dry reforming of methane. Int. J. Hydrogen Energy 33(16), 4337–4344 (2008)CrossRef
75.
go back to reference B. Fidalgo, A. Arenillas, J.A. Menendez, Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel 89(12), 4002–4007 (2010)CrossRef B. Fidalgo, A. Arenillas, J.A. Menendez, Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel 89(12), 4002–4007 (2010)CrossRef
76.
go back to reference A.L. Tarasov, O.P. Tkachenko, O.A. Kirichenko, L.M. Kustov, Microwave-activated carbon dioxide reforming of propane over Ni/TiO2 catalysts. Russ. Chem. Bull. 65(12), 2820–2824 (2016)CrossRef A.L. Tarasov, O.P. Tkachenko, O.A. Kirichenko, L.M. Kustov, Microwave-activated carbon dioxide reforming of propane over Ni/TiO2 catalysts. Russ. Chem. Bull. 65(12), 2820–2824 (2016)CrossRef
77.
go back to reference T. Odedairo, J. Ma, J.L. Chen, S.B. Wang, Z.H. Zhu, Influences of doping Cr/Fe/Ta on the performance of Ni/CeO2 catalyst under microwave irradiation in dry reforming of CH4. J. Solid State Chem. 233, 166–177 (2016)CrossRef T. Odedairo, J. Ma, J.L. Chen, S.B. Wang, Z.H. Zhu, Influences of doping Cr/Fe/Ta on the performance of Ni/CeO2 catalyst under microwave irradiation in dry reforming of CH4. J. Solid State Chem. 233, 166–177 (2016)CrossRef
78.
go back to reference W.Y. Deng, Y.X. Su, S.G. Liu, H.G. Shen, Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production. Int. J. Hydrogen Energy 39(17), 9169–9179 (2014)CrossRef W.Y. Deng, Y.X. Su, S.G. Liu, H.G. Shen, Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production. Int. J. Hydrogen Energy 39(17), 9169–9179 (2014)CrossRef
79.
go back to reference Y. Suttisawat, S. Horikoshi, H. Sakai, M. Abe, Hydrogen production from tetralin over microwave-accelerated Pt-supported activated carbon. Int. J. Hydrogen Energy 35(12), 6179–6183 (2010)CrossRef Y. Suttisawat, S. Horikoshi, H. Sakai, M. Abe, Hydrogen production from tetralin over microwave-accelerated Pt-supported activated carbon. Int. J. Hydrogen Energy 35(12), 6179–6183 (2010)CrossRef
80.
go back to reference Y. Wan, P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin, R. Ruan, Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J. Anal. Appl. Pyrolysis 86(1), 161–167 (2009)CrossRef Y. Wan, P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin, R. Ruan, Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J. Anal. Appl. Pyrolysis 86(1), 161–167 (2009)CrossRef
81.
go back to reference A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRef A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRef
82.
go back to reference X. Zhao, M. Wang, H. Liu, L. Li, C. Ma, Z. Song, A microwave reactor for characterization of pyrolyzed biomass. Bioresour. Technol. 104, 673–678 (2012)CrossRef X. Zhao, M. Wang, H. Liu, L. Li, C. Ma, Z. Song, A microwave reactor for characterization of pyrolyzed biomass. Bioresour. Technol. 104, 673–678 (2012)CrossRef
83.
go back to reference C. Yin, Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour. Technol. 120, 273–284 (2012)CrossRef C. Yin, Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour. Technol. 120, 273–284 (2012)CrossRef
84.
go back to reference Y. Fernández, A. Arenillas, J.Á. Menéndez, Microwave heating applied to pyrolysis. In Advances in Induction and Microwave Heating of Mineral and Organic Materials (InTech, 2011) Y. Fernández, A. Arenillas, J.Á. Menéndez, Microwave heating applied to pyrolysis. In Advances in Induction and Microwave Heating of Mineral and Organic Materials (InTech, 2011)
85.
go back to reference S.P. Zhang, Q. Dong, L. Zhang, Y.Q. Xiong, High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 191, 17–23 (2015)CrossRef S.P. Zhang, Q. Dong, L. Zhang, Y.Q. Xiong, High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 191, 17–23 (2015)CrossRef
86.
go back to reference P. Lahijani, Z.A. Zainal, A.R. Mohamed, M. Mohammadi, Microwave-enhanced CO2 gasification of oil palm shell char. Bioresour. Technol. 158, 193–200 (2014)CrossRef P. Lahijani, Z.A. Zainal, A.R. Mohamed, M. Mohammadi, Microwave-enhanced CO2 gasification of oil palm shell char. Bioresour. Technol. 158, 193–200 (2014)CrossRef
87.
go back to reference Q. Dong, M.M. Niu, D.M. Bi, W.Y. Liu, X.X. Gu, C. Lu, Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour. Technol. 256, 145–151 (2018)CrossRef Q. Dong, M.M. Niu, D.M. Bi, W.Y. Liu, X.X. Gu, C. Lu, Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour. Technol. 256, 145–151 (2018)CrossRef
88.
go back to reference B.A. Mohamed, C.S. Kim, N. Ellis, X.T. Bi, Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 201, 121–132 (2016)CrossRef B.A. Mohamed, C.S. Kim, N. Ellis, X.T. Bi, Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 201, 121–132 (2016)CrossRef
89.
go back to reference D. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001)CrossRef D. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001)CrossRef
90.
go back to reference A.N. Yusoff, M. Abdullah, S. Ahmad, S. Jusoh, A. Mansor, S. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92(2), 876–882 (2002)CrossRef A.N. Yusoff, M. Abdullah, S. Ahmad, S. Jusoh, A. Mansor, S. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92(2), 876–882 (2002)CrossRef
91.
go back to reference G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011)CrossRef G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011)CrossRef
92.
go back to reference Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016)CrossRef Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016)CrossRef
93.
go back to reference X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011)CrossRef X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011)CrossRef
94.
go back to reference R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004)CrossRef R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004)CrossRef
95.
go back to reference M.-S. Cao, J. Yang, W.-L. Song, D.-Q. Zhang, B. Wen, H.-B. Jin, Z.-L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012)CrossRef M.-S. Cao, J. Yang, W.-L. Song, D.-Q. Zhang, B. Wen, H.-B. Jin, Z.-L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012)CrossRef
96.
go back to reference R. Che, C. Zhi, C. Liang, X. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006)CrossRef R. Che, C. Zhi, C. Liang, X. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006)CrossRef
97.
go back to reference M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115(5), 1398–1402 (2010)CrossRef M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115(5), 1398–1402 (2010)CrossRef
98.
go back to reference X. Guo, Y. Deng, D. Gu, R. Che, D. Zhao, Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. J. Mater. Chem. 19(37), 6706–6712 (2009)CrossRef X. Guo, Y. Deng, D. Gu, R. Che, D. Zhao, Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. J. Mater. Chem. 19(37), 6706–6712 (2009)CrossRef
99.
go back to reference F. Razmjooei, K.P. Singh, M.Y. Song, J.-S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014)CrossRef F. Razmjooei, K.P. Singh, M.Y. Song, J.-S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014)CrossRef
100.
go back to reference H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Müllen, Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135(43), 16002–16005 (2013)CrossRef H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Müllen, Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135(43), 16002–16005 (2013)CrossRef
101.
go back to reference J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. 127(14), 4399–4403 (2015)CrossRef J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. 127(14), 4399–4403 (2015)CrossRef
102.
go back to reference S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv. Mater. 24(15), 2037–2041 (2012)CrossRef S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv. Mater. 24(15), 2037–2041 (2012)CrossRef
103.
go back to reference T. Ji, Z. Li, C. Liu, X. Lu, L. Li, J. Zhu, Niobium-doped TiO2 solid acid catalysts: strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production. Appl. Catal. B 243, 741–749 (2019)CrossRef T. Ji, Z. Li, C. Liu, X. Lu, L. Li, J. Zhu, Niobium-doped TiO2 solid acid catalysts: strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production. Appl. Catal. B 243, 741–749 (2019)CrossRef
104.
go back to reference Y. Zhukova, Y. Pustov, A. Konopatsky, S. Dubinskiy, M. Filonov, V. Brailovski, Corrosion fatigue and electrochemical behavior of superelastic Ti-Nb-Ta alloy for medical implants under cyclic load conditions. Mater. Today Proc. 2, S991–S994 (2015)CrossRef Y. Zhukova, Y. Pustov, A. Konopatsky, S. Dubinskiy, M. Filonov, V. Brailovski, Corrosion fatigue and electrochemical behavior of superelastic Ti-Nb-Ta alloy for medical implants under cyclic load conditions. Mater. Today Proc. 2, S991–S994 (2015)CrossRef
105.
go back to reference J.-P. Niemelä, Y. Hirose, T. Hasegawa, M. Karppinen, Transition in electron scattering mechanism in atomic layer deposited Nb: TiO2 thin films. Appl. Phys. Lett. 106(4), 042101 (2015)CrossRef J.-P. Niemelä, Y. Hirose, T. Hasegawa, M. Karppinen, Transition in electron scattering mechanism in atomic layer deposited Nb: TiO2 thin films. Appl. Phys. Lett. 106(4), 042101 (2015)CrossRef
106.
go back to reference P. De Wild, W. Huijgen, H. Heeres, Pyrolysis of wheat straw-derived organosolv lignin. J. Anal. Appl. Pyrol. 93, 95–103 (2012)CrossRef P. De Wild, W. Huijgen, H. Heeres, Pyrolysis of wheat straw-derived organosolv lignin. J. Anal. Appl. Pyrol. 93, 95–103 (2012)CrossRef
Metadata
Title
Microwave-Responsive Nanomaterials for Catalysis
Authors
Tuo Ji
Jiahua Zhu
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39994-8_2