Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

16-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

Mining user–user communities for a weighted bipartite network using spark GraphFrames and Flink Gelly

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
T. Ramalingeswara Rao, Soumya Kanti Ghosh, Adrijit Goswami
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Large-scale graph processing is one of the recently developed significant research areas relevant to big data analytics. Distributed graph analytics is useful to see the intuitive insights of node interactions from large-scale network data. Distributed graph computing is an upcoming area in graph data mining that explores crucial node relationships for a given graph dataset. In this paper, we propose a new method to discover top-k user–user communities for a weighted bipartite network by defining a weighted similarity measure. We extend the structural similarity metric, namely Otsuka–Ochiai coefficient, by adding weights of nodes and quantifies the similarity between distinct items of a user–item network. We propose a new method to mine top-k user–user communities based on the similarity of items using a weighted similarity measure. Further, two algorithms, namely TUCSGF, TUCFlink, are presented to mine top-k user–user communities in a distributed approach based on the strength of the item-to-item similarities. Moreover, we execute the TUCSGF algorithm using Apache Spark by utilizing the advantage of Spark GraphFrames to mine top-k user–user communities. Also, we implement the TUCFlink algorithm to mine top-k communities using Apache Flink by utilizing the functionalities of Flink Gelly. Further, we explore two real-world network applications online learning network, chain of hospitals network with various graph methods that are to be applied for both the applications. Furthermore, we systematically perform various experiments concerning execution time, memory consumption, and CPU usage of both TUCSGF, TUCFlink on three distinct datasets. The performance of TUCFLINK is far better than TUCSGF concerning computing time. Applying distributed graph analytics for various complex networks using distributed graph processing tools GraphX, GraphFrames and Gelly provides more intuitive insights about distinct types of node interactions in graph data mining.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits