Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 1/2023

28-10-2022 | Original Article

Modeling a non-Newtonian nanofluid flow between intersecting planes with slip mechanism

Authors: Sohail Rehman, Hashim, Sultan Alqahtani, Sultan Alshehery

Published in: Continuum Mechanics and Thermodynamics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present article is framed to address the Jeffery–Hamel flow of a generalized Newtonian fluid between two intersecting plane walls subject to viscous dissipation and slip mechanisms. The transport equations for nanofluids are formulated using the Buongiorno model along with the Carreau constitutive model. The strongly nonlinear system of partial differential equations involving momentum, energy and concentration conservations is modelled for purely radial flow. The reduced system of ordinary differential equations is numerically handled via shooting approach with implicit Runge–Kutta–Butcher and Nachtsheim–Swigert iteration techniques. The precise details of the numerical outcomes of the current investigation are presented via velocity, temperature, concentration, friction coefficient, Nusselt and Sherwood numbers for various involved parameters within converging/diverging zone with semi-apex angle of the channel. The results of this study tend to show that velocity slip factor reduces the fluid velocity in converging channel more dominantly in contrast to the diverging channel. On the other hand, temperature and concentration are dwindle with the manifestation of temperature and concentration slips. The Carreau fluid parameter such as Weissenberg and power index exhibits opposite behavior for velocity and temperature fields. In a limiting context, the present results are compared with those of an already published study. A strong alignment between the numerical values is noted. The results of present study have possible applications in flow through nozzles, diffusers, and reducers in polymer processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon press, Oxford (1873)MATH Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon press, Oxford (1873)MATH
2.
go back to reference Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Public. Fed. 231, 99–106 (1995) Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Public. Fed. 231, 99–106 (1995)
3.
go back to reference Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef
4.
go back to reference Das, S.K., Choi, S.U.S., Yu, W., Pradeep, Y.: Nanofluids: Science and Technology. Wiley, New Jersey (2008) Das, S.K., Choi, S.U.S., Yu, W., Pradeep, Y.: Nanofluids: Science and Technology. Wiley, New Jersey (2008)
5.
go back to reference Minkowycz, W.J., Sparrow, E.M., Abraham, J.P.: Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, Boca Raton (2013) Minkowycz, W.J., Sparrow, E.M., Abraham, J.P.: Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, Boca Raton (2013)
6.
go back to reference Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37, 1451–1467 (2013)CrossRefMATH Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37, 1451–1467 (2013)CrossRefMATH
7.
go back to reference Mushtaq, A., Mustafa, M., Hayat, T., Alsaedi, A.: Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv. Powder Technol. 27, 2223–2231 (2016)CrossRef Mushtaq, A., Mustafa, M., Hayat, T., Alsaedi, A.: Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv. Powder Technol. 27, 2223–2231 (2016)CrossRef
8.
go back to reference Turkyilmazoglu, M.: Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models. Eur. J. Mech. B Fluids 65, 184–191 (2017)ADSCrossRefMATH Turkyilmazoglu, M.: Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models. Eur. J. Mech. B Fluids 65, 184–191 (2017)ADSCrossRefMATH
9.
go back to reference Rostami, M.N., Dinarvand, S., Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 56(5), 2465–2478 (2018)CrossRef Rostami, M.N., Dinarvand, S., Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 56(5), 2465–2478 (2018)CrossRef
10.
go back to reference Nadeem, S., Abbas, N., Khan, A.U.: Characteristics of three-dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)ADSCrossRef Nadeem, S., Abbas, N., Khan, A.U.: Characteristics of three-dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)ADSCrossRef
11.
go back to reference Hassan, M., Marin, M., Alsharif, A., Ellahi, R.: Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys. Lett. A 382(38), 2749–2753 (2018)ADSCrossRef Hassan, M., Marin, M., Alsharif, A., Ellahi, R.: Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys. Lett. A 382(38), 2749–2753 (2018)ADSCrossRef
12.
go back to reference Bhatti, M.M., Zeeshan, A., Bashir, F., Sait, S.M., Ellahi, R.: Sinusoidal motion of small particles through a Darcy–Brinkman–Forchheimer microchannel filled with non-Newtonian fluid under electro-osmotic forces. J. Taibah Univ. Sci. 15, 514–529 (2021)CrossRef Bhatti, M.M., Zeeshan, A., Bashir, F., Sait, S.M., Ellahi, R.: Sinusoidal motion of small particles through a Darcy–Brinkman–Forchheimer microchannel filled with non-Newtonian fluid under electro-osmotic forces. J. Taibah Univ. Sci. 15, 514–529 (2021)CrossRef
13.
go back to reference Ishtiaq, F., Ellahi, R., Bhatti, M.M., Alamri, S.Z.: Insight in thermally radiative cilia-driven flow of electrically conducting non-Newtonian Jeffrey fluid under the influence of induced magnetic field. Mathematics 10(12), 2007 (2022)CrossRef Ishtiaq, F., Ellahi, R., Bhatti, M.M., Alamri, S.Z.: Insight in thermally radiative cilia-driven flow of electrically conducting non-Newtonian Jeffrey fluid under the influence of induced magnetic field. Mathematics 10(12), 2007 (2022)CrossRef
14.
go back to reference Abbasi, A., Farooq, W., El, S.M., Tag-ElDin, S.U., Khan, M.I., Khan, K., Guedri, S., Elattar, M.W., Galal, A.M.: Heat transport exploration for hybrid nanoparticle (Cu, Fe\(_3\)O\(_4\))-based blood flow via tapered complex wavy curved channel with slip features. Micromachines 13, 1415 (2022)CrossRef Abbasi, A., Farooq, W., El, S.M., Tag-ElDin, S.U., Khan, M.I., Khan, K., Guedri, S., Elattar, M.W., Galal, A.M.: Heat transport exploration for hybrid nanoparticle (Cu, Fe\(_3\)O\(_4\))-based blood flow via tapered complex wavy curved channel with slip features. Micromachines 13, 1415 (2022)CrossRef
15.
go back to reference Kiranakumar, H.V., Thejas, R., Naveen, C.S., Khan, M.I., Prasanna, G.D., Reddy, S., Oreijah, M., Guedri, K., Bafakeeh, O.T., Jameel, M.: A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery (in press) (2022) Kiranakumar, H.V., Thejas, R., Naveen, C.S., Khan, M.I., Prasanna, G.D., Reddy, S., Oreijah, M., Guedri, K., Bafakeeh, O.T., Jameel, M.: A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery (in press) (2022)
16.
go back to reference Turkyilmazoglu, M.: Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface. J. Heat Transf. 134(7), Article 071701 (2012) Turkyilmazoglu, M.: Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface. J. Heat Transf. 134(7), Article 071701 (2012)
17.
go back to reference Niu, J., Zheng, L., Zhang, X.: Analytical solution of slip flow of nanofluids over a permeable wedge in the presence of magnetic field. Adv. Mater. Res. 354–355, 45–48 (2012) Niu, J., Zheng, L., Zhang, X.: Analytical solution of slip flow of nanofluids over a permeable wedge in the presence of magnetic field. Adv. Mater. Res. 354–355, 45–48 (2012)
18.
go back to reference Turkyilmazoglu, M.: Slip flow and heat transfer over a specific wedge: an exactly solvable Falkner–Skan equation. J. Eng. Math. 92, 73–81 (2015)CrossRefMATH Turkyilmazoglu, M.: Slip flow and heat transfer over a specific wedge: an exactly solvable Falkner–Skan equation. J. Eng. Math. 92, 73–81 (2015)CrossRefMATH
19.
go back to reference Babu, M.J., Sandeep, N.: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. J. Mol. Liq. 222, 1003–1009 (2016)CrossRef Babu, M.J., Sandeep, N.: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. J. Mol. Liq. 222, 1003–1009 (2016)CrossRef
20.
go back to reference Si, X., Li, H., Shen, Y.: Effects of nonlinear velocity slip and temperature jump on pseudo-plastic power-law fluid over moving permeable surface in presence of magnetic field. Appl. Math. Mech. 38(3), 333–342 (2017)CrossRef Si, X., Li, H., Shen, Y.: Effects of nonlinear velocity slip and temperature jump on pseudo-plastic power-law fluid over moving permeable surface in presence of magnetic field. Appl. Math. Mech. 38(3), 333–342 (2017)CrossRef
21.
go back to reference Muhammad, T., Alamri, S.Z., Waqas, H., Habib, D., Ellahi, R.: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 143, 945–957 (2021)CrossRef Muhammad, T., Alamri, S.Z., Waqas, H., Habib, D., Ellahi, R.: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 143, 945–957 (2021)CrossRef
22.
go back to reference Bég, O.A., Bég, T., Khan, W.A., Uddin, M.J.: Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: a numerical study. Heat Transf. 51(1), 1040–61 (2022)CrossRef Bég, O.A., Bég, T., Khan, W.A., Uddin, M.J.: Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: a numerical study. Heat Transf. 51(1), 1040–61 (2022)CrossRef
23.
go back to reference Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1, 2nd edn. (1987) Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1, 2nd edn. (1987)
24.
go back to reference Ahmed, J., Shahzad, A., Khan, M., Ali, R.: A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Adv. 5, 117117 (2015)ADSCrossRef Ahmed, J., Shahzad, A., Khan, M., Ali, R.: A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Adv. 5, 117117 (2015)ADSCrossRef
25.
go back to reference Ahmed, J., Begum, A., Shahzad, A., Ali, R.: MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions. Res. Phys. 6, 973–981 (2016) Ahmed, J., Begum, A., Shahzad, A., Ali, R.: MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions. Res. Phys. 6, 973–981 (2016)
26.
go back to reference Ahmed, J., Shahzad, A., Begum, A., Ali, R., Siddiqui, N.: Effects of inclined Lorentz forces on boundary layer flow of Sisko fluid over a radially stretching sheet with radiative heat transfer. J. Braz. Soc. Mech. Sci. Eng. 39, 3039–3050 (2017)CrossRef Ahmed, J., Shahzad, A., Begum, A., Ali, R., Siddiqui, N.: Effects of inclined Lorentz forces on boundary layer flow of Sisko fluid over a radially stretching sheet with radiative heat transfer. J. Braz. Soc. Mech. Sci. Eng. 39, 3039–3050 (2017)CrossRef
27.
go back to reference Cannata, G., Petrelli, C., Barsi, L., Gallerano, F.: Numerical integration of the contravariant integral form of the Navier–Stokes equations in time-dependent curvilinear coordinate systems for three-dimensional free surface flows. Continuum Mech. Thermodyn. 31, 491–519 (2019)ADSCrossRef Cannata, G., Petrelli, C., Barsi, L., Gallerano, F.: Numerical integration of the contravariant integral form of the Navier–Stokes equations in time-dependent curvilinear coordinate systems for three-dimensional free surface flows. Continuum Mech. Thermodyn. 31, 491–519 (2019)ADSCrossRef
28.
go back to reference Chereches, E.I., Sharma, K.V., Minea, A.A.: A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mech. Thermodyn. 37, 657–666 (2018)ADSCrossRefMATH Chereches, E.I., Sharma, K.V., Minea, A.A.: A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mech. Thermodyn. 37, 657–666 (2018)ADSCrossRefMATH
29.
go back to reference Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)CrossRef Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)CrossRef
30.
go back to reference Chhabra, R.P., Uhlherr, P.H.: Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheol. Acta 19(2), 187–95 (1980)CrossRef Chhabra, R.P., Uhlherr, P.H.: Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheol. Acta 19(2), 187–95 (1980)CrossRef
31.
go back to reference Khan, Hashim: Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 5, 107203 (2015)ADSCrossRef Khan, Hashim: Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 5, 107203 (2015)ADSCrossRef
32.
go back to reference Moradi, A., Alsaedi, A., Hayat, T.: Investigation of nanoparticles effect on the Jeffery–Hamel flow. Arab. J. Sci. Eng. 38(10), 2845–53 (2013)CrossRef Moradi, A., Alsaedi, A., Hayat, T.: Investigation of nanoparticles effect on the Jeffery–Hamel flow. Arab. J. Sci. Eng. 38(10), 2845–53 (2013)CrossRef
33.
go back to reference Shahzad, A., Ali, R., Hussain, M., Kamran, M.: Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet. Alex. Eng. J. 56, 35–41 (2017)CrossRef Shahzad, A., Ali, R., Hussain, M., Kamran, M.: Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet. Alex. Eng. J. 56, 35–41 (2017)CrossRef
34.
go back to reference Rehman, S., Hashim, Shah, S.I.A.: Numerical simulation for heat and mass transport of non-Newtonian Carreau rheological nanofluids through convergent/divergent channels. Proc. I. Mech. E. Part C J. Mech. Eng. Sci. (2022) Rehman, S., Hashim, Shah, S.I.A.: Numerical simulation for heat and mass transport of non-Newtonian Carreau rheological nanofluids through convergent/divergent channels. Proc. I. Mech. E. Part C J. Mech. Eng. Sci. (2022)
35.
36.
go back to reference Nachtsheim, P.R., Swigert, P.: Satisfaction of asymptotic boundary conditions in the numerical solution of boundary-layer equations (1965) Nachtsheim, P.R., Swigert, P.: Satisfaction of asymptotic boundary conditions in the numerical solution of boundary-layer equations (1965)
Metadata
Title
Modeling a non-Newtonian nanofluid flow between intersecting planes with slip mechanism
Authors
Sohail Rehman
Hashim
Sultan Alqahtani
Sultan Alshehery
Publication date
28-10-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 1/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01162-z

Other articles of this Issue 1/2023

Continuum Mechanics and Thermodynamics 1/2023 Go to the issue

Premium Partners