Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 1/2023

19-11-2022 | Original Article

Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model

Authors: Ahmed E. Abouelregal, Hamid M. Sedighi, Victor A. Eremeyev

Published in: Continuum Mechanics and Thermodynamics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework to establish the photothermal model. It is well-known that the optical and heat transfer properties of such materials behave as random functions of photoexcited-carrier density; therefore, the current model is remarkably more reliable compared to the earlier closed-form theories which are limited to a single form. The constructed theoretical framework is able to investigate the magneto-photo-thermoelastic problems in a semiconductor medium due to laser pulse excitation as a case study. Some parametric studies are used to exhibit the impact of thermal parameters, electromagnetic fields, laser pulses and thermoelectric coupling factors on the thermomagnetic behavior of physical variables. Finally, several numerical examples have been presented to draw the distributions of the examined field variables.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sarkisyan, T.V., et al.: Gain and carrier temperature response of semiconductor laser media to short optical pulses. J. Opt. Soc. Am. B 17, 840–850 (2000)ADSCrossRef Sarkisyan, T.V., et al.: Gain and carrier temperature response of semiconductor laser media to short optical pulses. J. Opt. Soc. Am. B 17, 840–850 (2000)ADSCrossRef
2.
go back to reference Almoneef, A.A., et al.: Laser short-pulse effect on thermodiffusion waves of fractional heat order for excited nonlocal semiconductor. Adv. Condens. Matter Phys. 2022, 1523059 (2022)CrossRef Almoneef, A.A., et al.: Laser short-pulse effect on thermodiffusion waves of fractional heat order for excited nonlocal semiconductor. Adv. Condens. Matter Phys. 2022, 1523059 (2022)CrossRef
3.
go back to reference Meyer, J.R., Bartoli, F.J., Kruer, M.R.: Optical heating in semiconductors. Phys. Rev. B 21, 1559 (1980)ADSCrossRef Meyer, J.R., Bartoli, F.J., Kruer, M.R.: Optical heating in semiconductors. Phys. Rev. B 21, 1559 (1980)ADSCrossRef
4.
go back to reference Ni, Y., et al.: Research on transient thermal behavior of semiconductor lasers under pulse current excitation by thermoreflection technique. Opt. Commun. 521, 128540 (2022)CrossRef Ni, Y., et al.: Research on transient thermal behavior of semiconductor lasers under pulse current excitation by thermoreflection technique. Opt. Commun. 521, 128540 (2022)CrossRef
5.
go back to reference Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, Berlin (2004)MATH Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, Berlin (2004)MATH
6.
go back to reference Wu, J.: The development and application of semiconductor materials. In: 7th International Forum on Electrical Engineering and Automation (IFEEA), pp. 153–156 (2020) Wu, J.: The development and application of semiconductor materials. In: 7th International Forum on Electrical Engineering and Automation (IFEEA), pp. 153–156 (2020)
7.
go back to reference Martynenko, I.V., Litvin, A.P., Purcell-Milton, F., Baranov, A.V., Fedorov, A.V., Gun’ko, Y.K.: Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 5(33), 6701–6727 (2017)CrossRef Martynenko, I.V., Litvin, A.P., Purcell-Milton, F., Baranov, A.V., Fedorov, A.V., Gun’ko, Y.K.: Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 5(33), 6701–6727 (2017)CrossRef
8.
go back to reference Huang, X., Liu, C., Zhou, P.: 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 6, 51 (2022)CrossRef Huang, X., Liu, C., Zhou, P.: 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 6, 51 (2022)CrossRef
9.
go back to reference Sahu, M.K.: Semiconductor nanoparticles theory and applications. Int. J. Appl. Eng. Res. 14(2), 491–494 (2019) Sahu, M.K.: Semiconductor nanoparticles theory and applications. Int. J. Appl. Eng. Res. 14(2), 491–494 (2019)
10.
go back to reference El-Sapa, S., et al.: Moore–Gibson–Thompson theory of a non-local excited semiconductor medium with stability studies. Alex. Eng. J. 61, 11753–11764 (2022)CrossRef El-Sapa, S., et al.: Moore–Gibson–Thompson theory of a non-local excited semiconductor medium with stability studies. Alex. Eng. J. 61, 11753–11764 (2022)CrossRef
11.
12.
go back to reference Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)ADSMATHCrossRef Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)ADSMATHCrossRef
14.
go back to reference Chirilă, A., Marin, M., Montanaro, A.: Well-posedness for thermo-electro-viscoelasticity of Green–Naghdi type. Contin. Mech. Thermodyn. 34, 39–60 (2022)ADSCrossRef Chirilă, A., Marin, M., Montanaro, A.: Well-posedness for thermo-electro-viscoelasticity of Green–Naghdi type. Contin. Mech. Thermodyn. 34, 39–60 (2022)ADSCrossRef
15.
go back to reference Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020)ADSCrossRef Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020)ADSCrossRef
16.
go back to reference Del Piero, G.: A mechanical model for heat conduction. Contin. Mech. Thermodyn. 32, 1159–1172 (2020)MATHCrossRef Del Piero, G.: A mechanical model for heat conduction. Contin. Mech. Thermodyn. 32, 1159–1172 (2020)MATHCrossRef
17.
go back to reference Abouelregal, A.E., et al.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. 34, 1067–1085 (2022)ADSCrossRef Abouelregal, A.E., et al.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. 34, 1067–1085 (2022)ADSCrossRef
18.
go back to reference Jalaei, M.H., Thai, H.T., Civalek, Ö.: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)MATHCrossRef Jalaei, M.H., Thai, H.T., Civalek, Ö.: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)MATHCrossRef
19.
go back to reference Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9, 686–693 (1995)CrossRef Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9, 686–693 (1995)CrossRef
20.
go back to reference Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Differ. Equ. 259, 7610–7635 (2015)ADSMATHCrossRef Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Differ. Equ. 259, 7610–7635 (2015)ADSMATHCrossRef
21.
go back to reference Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)MATHCrossRef Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)MATHCrossRef
22.
go back to reference Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020) Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)
23.
go back to reference Abouelregal, A.E., et al.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity. Materials 13, 4463 (2020)ADSCrossRef Abouelregal, A.E., et al.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity. Materials 13, 4463 (2020)ADSCrossRef
24.
go back to reference Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235, 1004–1020 (2021) Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235, 1004–1020 (2021)
26.
go back to reference Abouelregal, A.E., Ersoy, H., Civalek, O.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9, 1536 (2021)CrossRef Abouelregal, A.E., Ersoy, H., Civalek, O.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9, 1536 (2021)CrossRef
28.
go back to reference Sharma, N., Kumar, R.: Photo-thermoelastic investigation of semiconductor material due to distributed loads. J. Solid Mech. 13, 202–212 (2021) Sharma, N., Kumar, R.: Photo-thermoelastic investigation of semiconductor material due to distributed loads. J. Solid Mech. 13, 202–212 (2021)
29.
go back to reference Kaur, I., Singh, K., Craciun, E.-M.: A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore–Gibson–Thompson heat transfer under the Hall effect. Mathematics 10(14), 2386 (2022)CrossRef Kaur, I., Singh, K., Craciun, E.-M.: A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore–Gibson–Thompson heat transfer under the Hall effect. Mathematics 10(14), 2386 (2022)CrossRef
30.
go back to reference Alzahrani, F.S., Abbas, I.A.: Photothermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model. Mathematics 8(4), 585 (2020)CrossRef Alzahrani, F.S., Abbas, I.A.: Photothermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model. Mathematics 8(4), 585 (2020)CrossRef
31.
go back to reference Gafel, H.S.: Fractional order study of the impact of a photo thermal wave on a semiconducting medium under magnetic field and thermoplastic theories. Inf. Sci. Lett. 11, 629–638 (2022)CrossRef Gafel, H.S.: Fractional order study of the impact of a photo thermal wave on a semiconducting medium under magnetic field and thermoplastic theories. Inf. Sci. Lett. 11, 629–638 (2022)CrossRef
32.
go back to reference Ahmed, E.A.A., El-Dhaba, A.R., Abou-Dina, M.S., Ghaleb, A.F.: On a two-dimensional model of generalized thermoelasticity with application. Sci. Rep. 12, 15562 (2022)ADSCrossRef Ahmed, E.A.A., El-Dhaba, A.R., Abou-Dina, M.S., Ghaleb, A.F.: On a two-dimensional model of generalized thermoelasticity with application. Sci. Rep. 12, 15562 (2022)ADSCrossRef
33.
go back to reference Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H.: Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. Eng. 19(4), 633–56 (2021) Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H.: Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. Eng. 19(4), 633–56 (2021)
34.
go back to reference Fahmy, M.A.: A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoelasticity theory with memory dependent derivative. Comput. Model. Eng. Sci. 126(1), 175–99 (2021) Fahmy, M.A.: A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoelasticity theory with memory dependent derivative. Comput. Model. Eng. Sci. 126(1), 175–99 (2021)
35.
go back to reference He, C.H., Liu, C., He, J.H., Mohammad-Sedighi, H., Shokri, A., Gepreel, K.A.: A fractal model for the internal temperature response of a porous concrete. Appl. Comput. Math. 21(1), 71–77 (2022)MATH He, C.H., Liu, C., He, J.H., Mohammad-Sedighi, H., Shokri, A., Gepreel, K.A.: A fractal model for the internal temperature response of a porous concrete. Appl. Comput. Math. 21(1), 71–77 (2022)MATH
36.
go back to reference Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional operator. J. Appl. Comput. Mech. 8(4), 1358–1369 (2022) Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional operator. J. Appl. Comput. Mech. 8(4), 1358–1369 (2022)
37.
go back to reference Gu, B., He, T., Ma, Y.: Scale effects on thermoelastic coupling wave propagation of micro-beam resonator using nonlocal stain gradient and generalized thermoelasticity. Int. J. Appl. Mech. 13(09), 2150103 (2021)CrossRef Gu, B., He, T., Ma, Y.: Scale effects on thermoelastic coupling wave propagation of micro-beam resonator using nonlocal stain gradient and generalized thermoelasticity. Int. J. Appl. Mech. 13(09), 2150103 (2021)CrossRef
38.
go back to reference Sladek, J., Sladek, V., Repka, M.: The heat conduction in nanosized structures. Phys. Mesomech. 24, 611–617 (2021)CrossRef Sladek, J., Sladek, V., Repka, M.: The heat conduction in nanosized structures. Phys. Mesomech. 24, 611–617 (2021)CrossRef
39.
go back to reference Govindarajan, S.G., Solbrekken, G.L.: Non-dimensional thermoelastic model of a compound annular cylinder in a stress-free state with internal heat generation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(19), 4314–26 (2021)CrossRef Govindarajan, S.G., Solbrekken, G.L.: Non-dimensional thermoelastic model of a compound annular cylinder in a stress-free state with internal heat generation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(19), 4314–26 (2021)CrossRef
40.
go back to reference Awwad, E., Abouelregal, A., Hassan, A.: Thermoelastic memory-dependent responses to an infinite medium with a cylindrical hole and temperature-dependent properties. J. Appl. Comput. Mech. 7(2), 870–882 (2021) Awwad, E., Abouelregal, A., Hassan, A.: Thermoelastic memory-dependent responses to an infinite medium with a cylindrical hole and temperature-dependent properties. J. Appl. Comput. Mech. 7(2), 870–882 (2021)
41.
go back to reference Chen, W., Ikehata, R.: The Cauchy problem for the Moore–Gibson–Thompson equation in the dissipative case. J. Differ. Equ. 292, 176–219 (2021)ADSMATHCrossRef Chen, W., Ikehata, R.: The Cauchy problem for the Moore–Gibson–Thompson equation in the dissipative case. J. Differ. Equ. 292, 176–219 (2021)ADSMATHCrossRef
42.
go back to reference Todorović, D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582–585 (2003)ADSCrossRef Todorović, D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582–585 (2003)ADSCrossRef
43.
go back to reference Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545–1557 (2012)MATHCrossRef Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545–1557 (2012)MATHCrossRef
44.
go back to reference Othman, M.I.A., Tantawi, R.S., Eraki, E.E.M.: Effect of rotation on a semiconducting medium with two-temperatures under LS theory. Arch. Thermodyn. 38, 101–122 (2017)ADSCrossRef Othman, M.I.A., Tantawi, R.S., Eraki, E.E.M.: Effect of rotation on a semiconducting medium with two-temperatures under LS theory. Arch. Thermodyn. 38, 101–122 (2017)ADSCrossRef
45.
go back to reference Rämer, A., Osmani, O., Rethfeld, B.: Laser damage in silicon: energy absorption, relaxation, and transport. J. Appl. Phys. 116, 053508 (2014)ADSCrossRef Rämer, A., Osmani, O., Rethfeld, B.: Laser damage in silicon: energy absorption, relaxation, and transport. J. Appl. Phys. 116, 053508 (2014)ADSCrossRef
46.
go back to reference Yang, J., et al.: The effect of different pulse widths on lattice temperature variation of silicon under the action of a picosecond laser. Micromachines 13, 1119 (2022)CrossRef Yang, J., et al.: The effect of different pulse widths on lattice temperature variation of silicon under the action of a picosecond laser. Micromachines 13, 1119 (2022)CrossRef
Metadata
Title
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
Authors
Ahmed E. Abouelregal
Hamid M. Sedighi
Victor A. Eremeyev
Publication date
19-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 1/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01170-z

Other articles of this Issue 1/2023

Continuum Mechanics and Thermodynamics 1/2023 Go to the issue

Premium Partners