Skip to main content
Top
Published in: Archive of Applied Mechanics 3/2022

24-11-2021 | Original

Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts

Authors: Tao Yang, Qingjie Cao

Published in: Archive of Applied Mechanics | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a novel spring suspension strut with quasi-zero-stiffness (QZS) and zero-stiffness (ZS) properties is proposed to improve the performance of the multi-directional micro-vibration isolator. The QZS and ZS properties are achieved by developing a hexagon structure with negative stiffness mechanism to counteract the positive stiffness of a vertical suspension spring. The strut also has high loading capacity and excellent equilibrium stability. Based on the Stewart platform, the spring suspension strut can largely lower the isolation frequency in all 6-degrees-of-freedom (6DOFs), while the effectiveness of micro-vibration isolator is notably improved. The effects of nonlinearity on the stability, equivalent cross-coupling force and vibration response are discussed in detail. The design concept of the spring suspension strut is first proposed, and the static modeling is conducted. Then, by using such struts as supporting mounts, a 6DOFs micro-vibration isolator is achieved, and the equivalent cross-coupling force and stiffness of the isolator are analyzed. Furthermore, the equations of motion of the isolator are established by the Hamilton principle. The frequency response characteristics particularly for force transmissibility of the platform are obtained to achieve the parameter optimization for maximum frequency band of isolation. Finally, compared with the linear counterpart, the 6DOFs QZS and ZS micro-vibration isolator has broader bandwidth of isolation starting from lower frequency and possesses higher effectiveness in ultra-low-frequency range. The results presented herein provide an insight of dynamics into the QZS and ZS mechanisms for their application in multi-directional vibration engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rivin, E.I.: Vibration isolation of precision equipment. Precis. Eng. 17, 41–46 (1995)CrossRef Rivin, E.I.: Vibration isolation of precision equipment. Precis. Eng. 17, 41–46 (1995)CrossRef
2.
go back to reference Liu, L., Zheng, G., Huang, W.: Octo-strut vibration isolation platform and its application to whole spacecraft vibration isolation. J. Sound Vib. 289726–744 (2006) Liu, L., Zheng, G., Huang, W.: Octo-strut vibration isolation platform and its application to whole spacecraft vibration isolation. J. Sound Vib. 289726–744 (2006)
3.
go back to reference Denoyer, K.K., Johnson, C.D.: Recent achievements in vibration isolation systems for space launch and on-orbit applications. In: International Astronautical Congress 52nd, Toulouse, France (2001) Denoyer, K.K., Johnson, C.D.: Recent achievements in vibration isolation systems for space launch and on-orbit applications. In: International Astronautical Congress 52nd, Toulouse, France (2001)
4.
go back to reference Chi, W., Ma, S.J., Sun, J.Q.: A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control. Appl. Math. Mech. Engl. Ed. 41, 805–818 (2020)MathSciNetMATHCrossRef Chi, W., Ma, S.J., Sun, J.Q.: A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control. Appl. Math. Mech. Engl. Ed. 41, 805–818 (2020)MathSciNetMATHCrossRef
5.
go back to reference Yang, J., Sun, S., Tian, T., et al.: Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech. Syst. Signal Process. 70, 811–820 (2016)CrossRef Yang, J., Sun, S., Tian, T., et al.: Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech. Syst. Signal Process. 70, 811–820 (2016)CrossRef
6.
go back to reference Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)CrossRef Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)CrossRef
7.
go back to reference Zhang, J., Xu, D., Zhou, J., et al.: Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control. Chaos Solitons Fract. 45, 1255–1265 (2012)MathSciNetCrossRef Zhang, J., Xu, D., Zhou, J., et al.: Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control. Chaos Solitons Fract. 45, 1255–1265 (2012)MathSciNetCrossRef
8.
go back to reference Huang, D., Li, W., Yang, G., et al.: Analysis of limit cycles and stochastic responses of a real-power vibration isolation system under delayed feedback control. Chaos Solitons Fract. 112, 125–134 (2018)MathSciNetMATHCrossRef Huang, D., Li, W., Yang, G., et al.: Analysis of limit cycles and stochastic responses of a real-power vibration isolation system under delayed feedback control. Chaos Solitons Fract. 112, 125–134 (2018)MathSciNetMATHCrossRef
9.
go back to reference Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332, 167–183 (2013)CrossRef Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332, 167–183 (2013)CrossRef
10.
go back to reference Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)CrossRef Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)CrossRef
11.
go back to reference Li, Y., Xu, D.: Force transmissibility of floating raft systems with quasi-zero-stiffness isolators. J. Vib. Control 24, 3608–3616 (2018)MathSciNetCrossRef Li, Y., Xu, D.: Force transmissibility of floating raft systems with quasi-zero-stiffness isolators. J. Vib. Control 24, 3608–3616 (2018)MathSciNetCrossRef
12.
go back to reference Margielewicz, J., Ga̧ska, D., Litak, G.: Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator. Chaos Solitons Fract. 118, 47–57 (2019) Margielewicz, J., Ga̧ska, D., Litak, G.: Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator. Chaos Solitons Fract. 118, 47–57 (2019)
13.
go back to reference Li, Y., Xu, D.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017)CrossRef Li, Y., Xu, D.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017)CrossRef
14.
go back to reference Ding, H., Li, Y., Chen, L.Q.: Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dyn. 95, 2543–2554 (2019)MATHCrossRef Ding, H., Li, Y., Chen, L.Q.: Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dyn. 95, 2543–2554 (2019)MATHCrossRef
15.
go back to reference Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014)CrossRef Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014)CrossRef
16.
go back to reference Molyneux, W.G.: The support of an aircraft for ground resonance tests: a survey of available methods. Aircr. Eng. Aerosp. Technol. 30, 160–166 (1958)CrossRef Molyneux, W.G.: The support of an aircraft for ground resonance tests: a survey of available methods. Aircr. Eng. Aerosp. Technol. 30, 160–166 (1958)CrossRef
17.
go back to reference Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)CrossRef Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)CrossRef
18.
go back to reference Cai, C., Zhou, J., Wu, L., Wang, K., Xu, D., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020)CrossRef Cai, C., Zhou, J., Wu, L., Wang, K., Xu, D., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020)CrossRef
19.
go back to reference Wang, K., Zhou, J., Ouyang, H., Cheng, L., Xu, D.: A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int. J. Mech. Sci. 176, 105548 (2020)CrossRef Wang, K., Zhou, J., Ouyang, H., Cheng, L., Xu, D.: A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int. J. Mech. Sci. 176, 105548 (2020)CrossRef
20.
go back to reference Lu, Z., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)CrossRef Lu, Z., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)CrossRef
21.
go back to reference Tan, D., Lu, Z., Gu, D., Ding, H., Chen, L.Q.: A ring vibration isolator enhanced by a nonlinear energy sink. J. Sound Vib. 508, 116201 (2021)CrossRef Tan, D., Lu, Z., Gu, D., Ding, H., Chen, L.Q.: A ring vibration isolator enhanced by a nonlinear energy sink. J. Sound Vib. 508, 116201 (2021)CrossRef
22.
go back to reference Lu, Z., Gu, D., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)CrossRef Lu, Z., Gu, D., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)CrossRef
23.
go back to reference Lu, Z., Brennan, M.J., Ding, H., Chen, L.Q.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2019)CrossRef Lu, Z., Brennan, M.J., Ding, H., Chen, L.Q.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2019)CrossRef
24.
go back to reference Lu, Z., Yang, T., Brennan, M.J., Liu, Z., Chen, L.Q.: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. ASME J. Appl. Mech. 84, 021001 (2017)CrossRef Lu, Z., Yang, T., Brennan, M.J., Liu, Z., Chen, L.Q.: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. ASME J. Appl. Mech. 84, 021001 (2017)CrossRef
25.
go back to reference Yang, T., Zhou, S., Fang, S., Qin, W., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis and applications. Appl. Phys. Rev. 8, 031317 (2021)CrossRef Yang, T., Zhou, S., Fang, S., Qin, W., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis and applications. Appl. Phys. Rev. 8, 031317 (2021)CrossRef
26.
go back to reference Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021)CrossRef Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021)CrossRef
27.
go back to reference Yang, T., Cao, Q., Li, Q., Qiu, H.: A multi-directional multistable device: modeling, experiment verification and applications. Mech. Syst. Signal Process. 146, 106986 (2021)CrossRef Yang, T., Cao, Q., Li, Q., Qiu, H.: A multi-directional multistable device: modeling, experiment verification and applications. Mech. Syst. Signal Process. 146, 106986 (2021)CrossRef
28.
go back to reference Yang, T., Cao, Q.: Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos Soliton. Fract. 131, 109516 (2020)MathSciNetCrossRef Yang, T., Cao, Q.: Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos Soliton. Fract. 131, 109516 (2020)MathSciNetCrossRef
29.
go back to reference Yang, T., Cao, Q.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019)CrossRef Yang, T., Cao, Q.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019)CrossRef
30.
go back to reference Ledezma-Ramirez, D.F., Ferguson, N.S., Brennan, M.J., Tang, B.: An experimental nonlinear low dynamic stiffness device for shock isolation. J. Sound Vib. 347, 1–13 (2015)CrossRef Ledezma-Ramirez, D.F., Ferguson, N.S., Brennan, M.J., Tang, B.: An experimental nonlinear low dynamic stiffness device for shock isolation. J. Sound Vib. 347, 1–13 (2015)CrossRef
31.
go back to reference Ahn, H.J., Lim, S.H., Park, C.: An integrated design of quasi-zero stiffness mechanism. J. Mech. Sci. Tec. 30, 1071–1075 (2016)CrossRef Ahn, H.J., Lim, S.H., Park, C.: An integrated design of quasi-zero stiffness mechanism. J. Mech. Sci. Tec. 30, 1071–1075 (2016)CrossRef
32.
go back to reference Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017)CrossRef Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017)CrossRef
33.
go back to reference Yang, T., Cao, Q.: Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. J. Stat. Mech. 2017, 043202 (2017)MathSciNetMATHCrossRef Yang, T., Cao, Q.: Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. J. Stat. Mech. 2017, 043202 (2017)MathSciNetMATHCrossRef
34.
go back to reference Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018)CrossRef Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018)CrossRef
35.
go back to reference Zhao, F., Ji, J.C., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)CrossRef Zhao, F., Ji, J.C., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)CrossRef
36.
go back to reference Liu, C., Tang, J., Yu, K., et al.: On the characteristics of a quasi-zero-stiffness vibration isolator with viscoelastic damper. Appl. Math. Model. 88, 367–381 (2020)MathSciNetMATHCrossRef Liu, C., Tang, J., Yu, K., et al.: On the characteristics of a quasi-zero-stiffness vibration isolator with viscoelastic damper. Appl. Math. Model. 88, 367–381 (2020)MathSciNetMATHCrossRef
37.
go back to reference Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332, 3377–3389 (2013)CrossRef Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332, 3377–3389 (2013)CrossRef
38.
go back to reference Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)CrossRef Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)CrossRef
39.
go back to reference Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87, 633–646 (2017)CrossRef Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87, 633–646 (2017)CrossRef
40.
go back to reference Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014)CrossRef Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014)CrossRef
41.
go back to reference Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015)CrossRef Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015)CrossRef
42.
go back to reference Shan, Y., Wu, W., Chen, X.: Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness. J. Vib. Acoust. 137, 045001 (2015)CrossRef Shan, Y., Wu, W., Chen, X.: Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness. J. Vib. Acoust. 137, 045001 (2015)CrossRef
43.
go back to reference Zheng, Y., Zhang, X., Luo, Y., Yan, B., Ma, C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)CrossRef Zheng, Y., Zhang, X., Luo, Y., Yan, B., Ma, C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)CrossRef
44.
go back to reference Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., Zhou, Z.: A novel vibration isolation system for reaction wheel on space telescopes. Acta Astronaut. 102, 1–13 (2014)CrossRef Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., Zhou, Z.: A novel vibration isolation system for reaction wheel on space telescopes. Acta Astronaut. 102, 1–13 (2014)CrossRef
45.
go back to reference Wu, Z., Jing, X., Sun, B., Li, F.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2016)CrossRef Wu, Z., Jing, X., Sun, B., Li, F.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2016)CrossRef
46.
go back to reference Zheng, Y., Li, Q., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Six-degrees-of-freedom quasi-zero-rigidity vibration isolation system based on stewart platform. China, Patent Application CN201510395953 (2016) Zheng, Y., Li, Q., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Six-degrees-of-freedom quasi-zero-rigidity vibration isolation system based on stewart platform. China, Patent Application CN201510395953 (2016)
47.
go back to reference Zhou, J., Wang, K., Xu, D., et al.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139, 034502 (2017)CrossRef Zhou, J., Wang, K., Xu, D., et al.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139, 034502 (2017)CrossRef
48.
go back to reference Lu, Z., Wu, D., Ding, H., Chen, L.Q.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89, 249–267 (2021)MathSciNetMATHCrossRef Lu, Z., Wu, D., Ding, H., Chen, L.Q.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89, 249–267 (2021)MathSciNetMATHCrossRef
Metadata
Title
Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts
Authors
Tao Yang
Qingjie Cao
Publication date
24-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 3/2022
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02074-1

Other articles of this Issue 3/2022

Archive of Applied Mechanics 3/2022 Go to the issue

Premium Partners