Skip to main content
Top

2019 | OriginalPaper | Chapter

Modeling Microbial Electrosynthesis

Authors : Benjamin Korth, Falk Harnisch

Published in: Bioelectrosynthesis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mathematical modeling is an overarching approach for assessing the complexity of microbial electrosynthesis (MES) and for complementing the relevant experimental research. By describing and linking compartments, components, and processes with appropriate mathematical equations, MES and the corresponding bioelectrodes and complete bioelectrochemical systems can be analyzed and predicted across several temporal and local scales. Thereby, insights into fundamental phenomena and mechanisms, in addition to process engineering and design can be obtained. However, a substantial lack of knowledge about extracellular electron transfer mechanisms and electrotrophic microorganisms presumably prevented the development of adequate models of MES, especially of biocathodes, so far. To propel efforts regarding this demanding task, this chapter provides a comprehensive overview of the relevant compartments, components and processes, appropriate model strategies, and a discussion on potential modeling pitfalls. By adapting an established approach to assessing the energetics of microorganism, an instruction for calculating stoichiometry, thermodynamics, and kinetics, with the example of electro-autotrophic growth at cathodes, is presented. Models of bioanodes and fundamental electrochemical equations are described to provided strategies for calculating cathodic electron-uptake reactions and connecting them to the microbial metabolism. Finally, differential equations are detailed for coupling the distinct compartments of a bioelectrochemical system. Although MES comprises anodic and cathodic reactions, the present chapter focuses on biocathodes representing a functional connection between cathode and electron-accepting microorganisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossary
Boundary condition
Allocation of a defined value (Dirichlet boundary condition, e.g., concentration) or of a derivative of a solution (Neumann boundary condition, e.g., flux) to the border between a compartment and the external world or to a border between two compartments to connect these compartments.
Compartment
Defined one-, two- or three-dimensional section of a model (e.g., biofilm and reactor volume) with specifically assigned parameters and variables.
Component
A charged or uncharged chemical species (e.g., acetate, bicarbonate, redox mediator, other ions) or sum of chemical species (e.g., biomass).
Educt
Starting component of a chemical reaction.
Flux
Transport phenomenon describing the rate of movement of a component per area (e.g., flux of a component through a membrane).
Global
A parameter/variable valid for all compartments of a model.
Grid
Entirety of spatial fragments constituting a compartment and defining the spatial resolution of the compartment.
Local
A parameter/variable valid only for a certain compartment of the model.
Locality
Specific position (x, y, z) within a compartment.
Mass balance
Equation that considers all transport and transformation reactions of a component and thus fulfills the conservation of mass. Needs to be established for every component in every compartment.
Parameter
A given value for biological/physical/chemical processes or properties.
Product
End component of a chemical reaction.
Reactant
Starting or end component of a chemical reaction.
Reactor volume
Denotes the cathodic compartment of a bioelectrochemical system in this chapter.
Transformation
Process changing the chemical nature of a component (e.g., chemical equilibrium reaction, oxidation, biomass synthesis).
Transport
Process changing the position of a component (e.g., diffusion and migration).
Variable
A value for biological/physical/chemical processes or properties calculated according to local parameters and variables (e.g., local concentrations, temperature).
Footnotes
1
Balance equations can also be established for energy and momentum.
 
Literature
1.
go back to reference National Research Council (1990) Ground water models: scientific and regulatory applications. Press NA, Washington, DC National Research Council (1990) Ground water models: scientific and regulatory applications. Press NA, Washington, DC
2.
go back to reference Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2006) Mathematical modeling of biofilms. Scientific and Technical Report no 18. IWA Publishing Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2006) Mathematical modeling of biofilms. Scientific and Technical Report no 18. IWA Publishing
14.
go back to reference Volesky B, Votruba J (1992) Modeling and optimization of fermentation processes, vol 1. 1st edn. Elsevier Science, Amsterdam Volesky B, Votruba J (1992) Modeling and optimization of fermentation processes, vol 1. 1st edn. Elsevier Science, Amsterdam
15.
go back to reference Krieg T, Madjarov J, Rosa LFM, Enzmann F, Harnisch F, Holtmann D, Rabaey K (2017) Reactors for microbial electrobiotechnology. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Advances in biochemical engineering/biotechnology. Springer, Berlin Krieg T, Madjarov J, Rosa LFM, Enzmann F, Harnisch F, Holtmann D, Rabaey K (2017) Reactors for microbial electrobiotechnology. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Advances in biochemical engineering/biotechnology. Springer, Berlin
17.
go back to reference Leader JJ (2004) Numerical analysis and scientific computation 1st edn. Pearson Education, New York Leader JJ (2004) Numerical analysis and scientific computation 1st edn. Pearson Education, New York
21.
go back to reference Von Stockar U (2013) Biothermodynamics – the role of thermodynamics in biochemical engineering. EPFL Press, LausanneCrossRef Von Stockar U (2013) Biothermodynamics – the role of thermodynamics in biochemical engineering. EPFL Press, LausanneCrossRef
26.
go back to reference Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R 61(2):262–280 Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R 61(2):262–280
38.
go back to reference Vanysek P (2001) CRC handbook of chemistry and physics 82nd edn. CRC Press, Boca Raton Vanysek P (2001) CRC handbook of chemistry and physics 82nd edn. CRC Press, Boca Raton
42.
go back to reference Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Advances in biochemical engineering/biotechnology. Springer, Berlin Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Advances in biochemical engineering/biotechnology. Springer, Berlin
46.
go back to reference Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2014) Brock biology of microorganisms 14th edn. Pearson Education, New York Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2014) Brock biology of microorganisms 14th edn. Pearson Education, New York
50.
go back to reference Strycharz SM, Malanoski AP, Snider RM, Yi H, Lovley DR, Tender LM (2011) Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1vs. variant strain KN400. Energy Environ Sci 4(3):896–913. https://doi.org/10.1039/c0ee00260g CrossRef Strycharz SM, Malanoski AP, Snider RM, Yi H, Lovley DR, Tender LM (2011) Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1vs. variant strain KN400. Energy Environ Sci 4(3):896–913. https://​doi.​org/​10.​1039/​c0ee00260g CrossRef
61.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications 2nd edn. Wiley, New York
65.
go back to reference Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
72.
go back to reference Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2(5):506–516. https://doi.org/10.1039/b816647a CrossRef Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2(5):506–516. https://​doi.​org/​10.​1039/​b816647a CrossRef
81.
go back to reference Kadic E, Heindel TJ (2014) An introduction to bioreactor hydrodynamics and gas-liquid mass transfer. Wiley, Hoboken, NJCrossRef Kadic E, Heindel TJ (2014) An introduction to bioreactor hydrodynamics and gas-liquid mass transfer. Wiley, Hoboken, NJCrossRef
82.
go back to reference Kayode Coker A (2001) Modeling of chemical kinetics and reactor design 1st edn. Gulf Publishing Company, Houston, TX Kayode Coker A (2001) Modeling of chemical kinetics and reactor design 1st edn. Gulf Publishing Company, Houston, TX
86.
go back to reference Matemadombo F, Puig S, Ganigué R, Ramírez-García R, Batlle-Vilanova P, Dolors Balaguer M, Colprim J (2016) Modelling the simultaneous production and separation of acetic acid from CO2 using an anion exchange membrane microbial electrosynthesis system. J Chem Technol Biot 92:1211–1217. https://doi.org/10.1002/jctb.5110 CrossRef Matemadombo F, Puig S, Ganigué R, Ramírez-García R, Batlle-Vilanova P, Dolors Balaguer M, Colprim J (2016) Modelling the simultaneous production and separation of acetic acid from CO2 using an anion exchange membrane microbial electrosynthesis system. J Chem Technol Biot 92:1211–1217. https://​doi.​org/​10.​1002/​jctb.​5110 CrossRef
90.
go back to reference Henry W (1803) Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil Trans R Soc Lond 93:29–274CrossRef Henry W (1803) Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil Trans R Soc Lond 93:29–274CrossRef
91.
go back to reference Smith FL, Harvey AH (2007) Avoid common pitfalls when using Henry’s law. Chem Eng Prog 103(9):33–39 Smith FL, Harvey AH (2007) Avoid common pitfalls when using Henry’s law. Chem Eng Prog 103(9):33–39
92.
go back to reference Raoult F-M (1887) Loi générale des tensions de vapeur des dissolvants. Comptes Rendus 104:1430–1433 Raoult F-M (1887) Loi générale des tensions de vapeur des dissolvants. Comptes Rendus 104:1430–1433
95.
go back to reference Von Stockar U, von der Wielen LAM (2003) Back to basics: thermodynamics in biochemical engineering. In: Von Stockar U et al (eds) Process integration in biochemical engineering. Advances in biochemical engineering/ biotechnology, vol 80. Springer, Berlin, pp 1–17. https://doi.org/10.1007/3-540-36782-9_1 CrossRef Von Stockar U, von der Wielen LAM (2003) Back to basics: thermodynamics in biochemical engineering. In: Von Stockar U et al (eds) Process integration in biochemical engineering. Advances in biochemical engineering/ biotechnology, vol 80. Springer, Berlin, pp 1–17. https://​doi.​org/​10.​1007/​3-540-36782-9_​1 CrossRef
Metadata
Title
Modeling Microbial Electrosynthesis
Authors
Benjamin Korth
Falk Harnisch
Copyright Year
2019
DOI
https://doi.org/10.1007/10_2017_35

Premium Partners