Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

25-06-2022 | Original Article

Modeling of combustion and turbulent jet diffusion flames in fractal dimensions

Authors: Rami Ahmad El-Nabulsi, Waranont Anukool

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Turbulent diffusion flames are considered an active field of research used in many engineering applications of combustion theory. The basic properties of jet diffusion flames were obtained in the literature, and their confrontation with observations and experiments support the mathematical aspects of combustion theory founded by famous researchers throughout dozen of years. From the other side, fractal analysis was undertaken effectively in the literature based on recent experimental studies and observations supporting the idea that flame instability results in growth of fractal structures at a flame front. Besides, fractals were used successfully to model the effects of turbulence on flame propagation in heat engines and turbulent flows. In this study, we used the new concept of “product-like fractal measure” introduced recently in the literature by Li and Ostoja-Starzewski in their formulation of anisotropic continuum media to model combustion and turbulent jet diffusion flames in fractal dimensions. The basic equations for flames in fractal dimensions have been derived and applied to study laminar and turbulent non-premixed flame besides flame extinction due to heat volumetric heat loss. Several features have been obtained and discussed in particular the application of the theory at small combustion scales.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Varga, B.E., Gao, W., Laurik, K.L., Tatrai, E., Simo, M., Somfai, G.M., Cabrera DeBuc, D.: Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. PLoS ONE 10(11), e0143711 (2015)CrossRef Varga, B.E., Gao, W., Laurik, K.L., Tatrai, E., Simo, M., Somfai, G.M., Cabrera DeBuc, D.: Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. PLoS ONE 10(11), e0143711 (2015)CrossRef
3.
go back to reference Ivanova, V.S., Bunin, I.J., Nosenko, V.I.: Fractal material science: a new direction in materials science, JOM50, 52–54 (1998) Ivanova, V.S., Bunin, I.J., Nosenko, V.I.: Fractal material science: a new direction in materials science, JOM50, 52–54 (1998)
4.
go back to reference Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18, 89–101 (1994)CrossRef Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18, 89–101 (1994)CrossRef
5.
go back to reference Agrisuelas, J., García-Jareño, J.J., Gimenez-Romero, D., Negrete, F., Vicente, F.: The fractal dimension as estimator of the fractional content of metal matrix composite materials. J. Solid State Electrochem. 13, 1599–1603 (2009)CrossRef Agrisuelas, J., García-Jareño, J.J., Gimenez-Romero, D., Negrete, F., Vicente, F.: The fractal dimension as estimator of the fractional content of metal matrix composite materials. J. Solid State Electrochem. 13, 1599–1603 (2009)CrossRef
6.
go back to reference Balankin, A.S., Bugrimov, A.L.: A fractal theory of polymer plasticity. Polym. Sci. USSR 34, 246 (1992) Balankin, A.S., Bugrimov, A.L.: A fractal theory of polymer plasticity. Polym. Sci. USSR 34, 246 (1992)
7.
go back to reference Balankin, A.S., Bugrimov, A.L.: Fractal theory of elasticity and rubber-like state of polymers. Polym. Sci. 34, 889 (1992) Balankin, A.S., Bugrimov, A.L.: Fractal theory of elasticity and rubber-like state of polymers. Polym. Sci. 34, 889 (1992)
8.
go back to reference Balankin, A.S., Tamayo, P.: Fractal solid mechanics. Rev. Mex. Phys. 40, 506 (1994) Balankin, A.S., Tamayo, P.: Fractal solid mechanics. Rev. Mex. Phys. 40, 506 (1994)
9.
go back to reference Balankin, A.S.: Elastic behavior of materials with multifractal structure. Phys. Rev. B 53, 5438 (1996)CrossRefADS Balankin, A.S.: Elastic behavior of materials with multifractal structure. Phys. Rev. B 53, 5438 (1996)CrossRefADS
10.
go back to reference Balankin, A.S.: The theory of multifractal elasticity: basic laws and constitutive equations. Rev. Mex. Phys. 42, 343 (1996)MathSciNetMATH Balankin, A.S.: The theory of multifractal elasticity: basic laws and constitutive equations. Rev. Mex. Phys. 42, 343 (1996)MathSciNetMATH
11.
go back to reference El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)MathSciNetMATHCrossRefADS El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)MathSciNetMATHCrossRefADS
12.
go back to reference El-Nabulsi, R.A.: Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Sol. 127, 224–230 (2019)CrossRefADS El-Nabulsi, R.A.: Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Sol. 127, 224–230 (2019)CrossRefADS
13.
go back to reference El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. Roy. Soc. A476, 20190729 (2020)MathSciNetMATHCrossRefADS El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. Roy. Soc. A476, 20190729 (2020)MathSciNetMATHCrossRefADS
14.
go back to reference El-Nabulsi, R.A.: Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Eur. Phys. J. P135, 683 (2020) El-Nabulsi, R.A.: Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Eur. Phys. J. P135, 683 (2020)
15.
go back to reference El-Nabulsi, R.A.: Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 10 (2020)CrossRefADS El-Nabulsi, R.A.: Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 10 (2020)CrossRefADS
16.
go back to reference El-Nabulsi, R.A.: On generalized fractional spin, fractional angular momentum, fractional momentum operators and noncommutativity in quantum mechanics. Few Body Syst. 61, 1–13 (2020)CrossRefADS El-Nabulsi, R.A.: On generalized fractional spin, fractional angular momentum, fractional momentum operators and noncommutativity in quantum mechanics. Few Body Syst. 61, 1–13 (2020)CrossRefADS
17.
18.
go back to reference Lindner, J.F., Kohar, V., Kia, B., Hippke, M., Learned, J.G., Ditto, W.L.: Strange nonchaotic stars. Phys. Rev. Lett. 114(5), 054101 (2015)CrossRefADS Lindner, J.F., Kohar, V., Kia, B., Hippke, M., Learned, J.G., Ditto, W.L.: Strange nonchaotic stars. Phys. Rev. Lett. 114(5), 054101 (2015)CrossRefADS
19.
go back to reference Sanchez, N., Alfaro, E.J., Perez, E.: The fractal dimension of projected clouds. Astrophys. J. 625, 849–856 (2005)CrossRefADS Sanchez, N., Alfaro, E.J., Perez, E.: The fractal dimension of projected clouds. Astrophys. J. 625, 849–856 (2005)CrossRefADS
20.
go back to reference Federrath, C., Klessen, R.S., Schmidt, W.: The fractal density structure in supersonic isothermal turbulence: solenoidal versus compressive energy injection. Astrophys. J. 692, 364–374 (2009)CrossRefADS Federrath, C., Klessen, R.S., Schmidt, W.: The fractal density structure in supersonic isothermal turbulence: solenoidal versus compressive energy injection. Astrophys. J. 692, 364–374 (2009)CrossRefADS
21.
go back to reference Beattie, J.R., Federrath, C.C., Klessen, R.S.: The relation between the true and observed fractal dimensions of turbulent clouds. Month. Not. R. Astron. Soc. 487, 2070–2081 (2019)CrossRefADS Beattie, J.R., Federrath, C.C., Klessen, R.S.: The relation between the true and observed fractal dimensions of turbulent clouds. Month. Not. R. Astron. Soc. 487, 2070–2081 (2019)CrossRefADS
22.
go back to reference Falconer, K.J.: Fractal Geometry-Mathematical Foundations and Applications. Wiley, New York (2003)MATHCrossRef Falconer, K.J.: Fractal Geometry-Mathematical Foundations and Applications. Wiley, New York (2003)MATHCrossRef
23.
go back to reference Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1983)CrossRef Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1983)CrossRef
24.
go back to reference Mandelbrot, B.B.: Fractals: Form, Chance, and Dimension, San Francisco. W. H. Freeman, CA (1977)MATH Mandelbrot, B.B.: Fractals: Form, Chance, and Dimension, San Francisco. W. H. Freeman, CA (1977)MATH
25.
26.
go back to reference Schonwetter, M.: Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems, PhD Thesis, Angefertigt in der Arbeitsgruppe Dynamical Systems and Social Dynamics am Max-Planck-Institut fur Physik komplexer Systeme in Dresden, (2016) Schonwetter, M.: Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems, PhD Thesis, Angefertigt in der Arbeitsgruppe Dynamical Systems and Social Dynamics am Max-Planck-Institut fur Physik komplexer Systeme in Dresden, (2016)
28.
go back to reference Davey, K., Prosser, R.: Analytical solutions for heat transfer on fractal and pre-fractal domains. Appl. Math. Mod. 37, 554–569 (2013)MathSciNetMATHCrossRef Davey, K., Prosser, R.: Analytical solutions for heat transfer on fractal and pre-fractal domains. Appl. Math. Mod. 37, 554–569 (2013)MathSciNetMATHCrossRef
29.
31.
34.
go back to reference Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stress 30, 889 (2007)MATHCrossRef Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stress 30, 889 (2007)MATHCrossRef
35.
go back to reference Ostoja-Starzewski, M., Li, J.: Towards thermoelasticity of fractal media. Z. Angew. Math. Phys. 60, 1 (2009)MathSciNet Ostoja-Starzewski, M., Li, J.: Towards thermoelasticity of fractal media. Z. Angew. Math. Phys. 60, 1 (2009)MathSciNet
37.
go back to reference Ostoja-Starzewski, M.: Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)MATHCrossRef Ostoja-Starzewski, M.: Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)MATHCrossRef
39.
go back to reference Li, J., Ostoja-Starzewski, M.: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1–12 (2009)MathSciNetMATH Li, J., Ostoja-Starzewski, M.: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1–12 (2009)MathSciNetMATH
40.
go back to reference Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, London (2009)MATHCrossRef Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, London (2009)MATHCrossRef
44.
go back to reference Prasad, R.R., Sreenivasan, K.R.: The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids A2, 792 (1990)CrossRefADS Prasad, R.R., Sreenivasan, K.R.: The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids A2, 792 (1990)CrossRefADS
45.
go back to reference Flohr, P., Olivari, D.: Fractal and multifractal characteristics of a scalar dispersed in a turbulent jet. Phys. D 76, 278–290 (1994)CrossRef Flohr, P., Olivari, D.: Fractal and multifractal characteristics of a scalar dispersed in a turbulent jet. Phys. D 76, 278–290 (1994)CrossRef
46.
go back to reference Vorobieff, P., Rightley, P.M., Benjamin, R.F.: Shock-driven gas curtain: fractal dimension evolution in transition to turbulence. Phys. D 133, 469–476 (1999)MATHCrossRef Vorobieff, P., Rightley, P.M., Benjamin, R.F.: Shock-driven gas curtain: fractal dimension evolution in transition to turbulence. Phys. D 133, 469–476 (1999)MATHCrossRef
47.
go back to reference Beattie, J.R., Federrath, C., Klessen, R.S.: The relation between the true and observed fractal dimensions of turbulent clouds. Month. Not. Roy. Astron. Soc. 487, 2070–2081 (2019)CrossRefADS Beattie, J.R., Federrath, C., Klessen, R.S.: The relation between the true and observed fractal dimensions of turbulent clouds. Month. Not. Roy. Astron. Soc. 487, 2070–2081 (2019)CrossRefADS
48.
go back to reference Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comp. Phys. 225, 427–448 (2007)MathSciNetMATHCrossRefADS Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comp. Phys. 225, 427–448 (2007)MathSciNetMATHCrossRefADS
49.
go back to reference Yakhot, A., Orszag, S., Yakhot, V., Israeli, M.: Renormalization group formulation of large-eddy simulations. J. Sci. Comput. 4, 139–158 (1989)MathSciNetMATHCrossRef Yakhot, A., Orszag, S., Yakhot, V., Israeli, M.: Renormalization group formulation of large-eddy simulations. J. Sci. Comput. 4, 139–158 (1989)MathSciNetMATHCrossRef
51.
go back to reference Vassilicos, J.C., Hunt, J.C.R.: Fractal dimensions and spectra of interfaces with application to turbulence. J. Roy. Soc. London A 435, 505–534 (1991)MathSciNetMATHADS Vassilicos, J.C., Hunt, J.C.R.: Fractal dimensions and spectra of interfaces with application to turbulence. J. Roy. Soc. London A 435, 505–534 (1991)MathSciNetMATHADS
53.
go back to reference Chin, Y.-W., Matthews, R.D., Nichols, S.P., Kiehne, T.M.: Use of fractal geometry to model turbulent combustion in SI engines. Combust. Sci. Tech. 86, 1–30 (1992)CrossRef Chin, Y.-W., Matthews, R.D., Nichols, S.P., Kiehne, T.M.: Use of fractal geometry to model turbulent combustion in SI engines. Combust. Sci. Tech. 86, 1–30 (1992)CrossRef
54.
go back to reference Mora, D.O., Bourgoin, M., Mininni, P.D., Obligado, M.: Clustering of vector nulls in homogeneous isotropic turbulence. Phys. Rev. Fluids 6, 024609 (2021)CrossRefADS Mora, D.O., Bourgoin, M., Mininni, P.D., Obligado, M.: Clustering of vector nulls in homogeneous isotropic turbulence. Phys. Rev. Fluids 6, 024609 (2021)CrossRefADS
55.
go back to reference Takeno, T., Murayama, M., Tanida, Y.: Fractal analysis of turbulent premixed flame surface. Exp. Fluids 10, 61–70 (1990)CrossRef Takeno, T., Murayama, M., Tanida, Y.: Fractal analysis of turbulent premixed flame surface. Exp. Fluids 10, 61–70 (1990)CrossRef
56.
go back to reference Roy, A., Sujith, R.I.: Fractal dimension of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef Roy, A., Sujith, R.I.: Fractal dimension of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef
57.
go back to reference Majda, A.J., Souganidis, P.: Flame fronts in a turbulent combustion model with fractal velocity fields. Commun. Pure Appl. Math. 51, 1337–1348 (1998)MathSciNetMATHCrossRef Majda, A.J., Souganidis, P.: Flame fronts in a turbulent combustion model with fractal velocity fields. Commun. Pure Appl. Math. 51, 1337–1348 (1998)MathSciNetMATHCrossRef
58.
go back to reference Verbeek, A.A., Bouten, T.W.F.M., Stoffels, G.G.M., Geurts, B.J., van der Meer, T.H.: Fractal turbulence enhancing low-swirl combustion. Combust. Flame 162, 129–143 (2015)CrossRef Verbeek, A.A., Bouten, T.W.F.M., Stoffels, G.G.M., Geurts, B.J., van der Meer, T.H.: Fractal turbulence enhancing low-swirl combustion. Combust. Flame 162, 129–143 (2015)CrossRef
59.
go back to reference Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 160, 2422–2433 (2013)CrossRef Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 160, 2422–2433 (2013)CrossRef
60.
go back to reference Gulder, O., Smallwood, G.J., Wong, R., Snelling, D.R., Smith, R., Deschamps, B., Sautet, J.-C.: Flame front surface characteristics in turbulent premixed propane/air combustion. Combust. Flame 120, 407–416 (2000)CrossRef Gulder, O., Smallwood, G.J., Wong, R., Snelling, D.R., Smith, R., Deschamps, B., Sautet, J.-C.: Flame front surface characteristics in turbulent premixed propane/air combustion. Combust. Flame 120, 407–416 (2000)CrossRef
61.
go back to reference Chen, Y.-C., Mansour, M.S.: Geometric interpretation of fractal parameters measured in turbulent premixed Bunsen flames. Exp. Therm. Fluid Sci. 27, 409–416 (2003)CrossRef Chen, Y.-C., Mansour, M.S.: Geometric interpretation of fractal parameters measured in turbulent premixed Bunsen flames. Exp. Therm. Fluid Sci. 27, 409–416 (2003)CrossRef
62.
go back to reference Roy, A., Sujith, R.I.: Fractal dimensions of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef Roy, A., Sujith, R.I.: Fractal dimensions of premixed flames in intermittent turbulence. Combust. Flame 226, 412–418 (2021)CrossRef
64.
go back to reference Ostoja-Starzewski, M., Li, J., Joumaa, H., Demmie, P.N.: From fractal media to continuum mechanics. Z. Angew. Math. Mech. 93, 1 (2013)MATH Ostoja-Starzewski, M., Li, J., Joumaa, H., Demmie, P.N.: From fractal media to continuum mechanics. Z. Angew. Math. Mech. 93, 1 (2013)MATH
65.
go back to reference Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and continuum mechanics. In: Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua: One Hundred Years after the Cosserats, pp. 315–323. Springer, Berlin. Chap. 33 (2010) Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and continuum mechanics. In: Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua: One Hundred Years after the Cosserats, pp. 315–323. Springer, Berlin. Chap. 33 (2010)
66.
go back to reference El-Nabulsi, R.A.: Thermal transport equations in porous media from product-like fractal measure. J. Therm. Stress. 44, 899–912 (2021)CrossRef El-Nabulsi, R.A.: Thermal transport equations in porous media from product-like fractal measure. J. Therm. Stress. 44, 899–912 (2021)CrossRef
67.
go back to reference El-Nabulsi, R.A.: Superconductivity and nucleation from fractal anisotropy and product-like fractal measure. Proc. Roy. Soc. A477, 20210065 (2021)MathSciNetCrossRefADS El-Nabulsi, R.A.: Superconductivity and nucleation from fractal anisotropy and product-like fractal measure. Proc. Roy. Soc. A477, 20210065 (2021)MathSciNetCrossRefADS
68.
go back to reference El-Nabulsi, R.A.: Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry. Phys. E: Low Dim. Syst. Nanostruct. 134, 114827 (2021)CrossRef El-Nabulsi, R.A.: Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry. Phys. E: Low Dim. Syst. Nanostruct. 134, 114827 (2021)CrossRef
69.
go back to reference El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A476, 20190729 (2020)MathSciNetMATHCrossRefADS El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A476, 20190729 (2020)MathSciNetMATHCrossRefADS
70.
go back to reference El-Nabulsi, R.A.: Quantization of Foster mesoscopic circuit and DC-pumped Josephson parametric amplifier from fractal measure arguments. Phys. E: Low Dim. Syst. Nanostruct. 133, 114845 (2021)CrossRef El-Nabulsi, R.A.: Quantization of Foster mesoscopic circuit and DC-pumped Josephson parametric amplifier from fractal measure arguments. Phys. E: Low Dim. Syst. Nanostruct. 133, 114845 (2021)CrossRef
71.
go back to reference El-Nabulsi, R.A.: Position-dependent mass fractal Schrodinger equation from fractal anisotropy and product-like fractal measure and its implications in quantum dots and nanocrystals. Opt. Quant. Elect. 53, 503 (2021)CrossRef El-Nabulsi, R.A.: Position-dependent mass fractal Schrodinger equation from fractal anisotropy and product-like fractal measure and its implications in quantum dots and nanocrystals. Opt. Quant. Elect. 53, 503 (2021)CrossRef
72.
go back to reference El-Nabulsi, R.A.: Fractal neutrons diffusion equation: uniformization of heat and fuel burn-up in nuclear reactor. Nucl. Eng. Des. 380, 111312 (2021)CrossRef El-Nabulsi, R.A.: Fractal neutrons diffusion equation: uniformization of heat and fuel burn-up in nuclear reactor. Nucl. Eng. Des. 380, 111312 (2021)CrossRef
74.
go back to reference Malyarenko, A., Ostoja-Starzewski, M.: Fractal planetary rings: energy inequalities and random field model. Int. J. Mod. Phys. B 31, 1750236 (2017)MathSciNetMATHCrossRefADS Malyarenko, A., Ostoja-Starzewski, M.: Fractal planetary rings: energy inequalities and random field model. Int. J. Mod. Phys. B 31, 1750236 (2017)MathSciNetMATHCrossRefADS
75.
go back to reference Mashayekhi, S., Miles, P., Hussaini, M.Y., Oates, W.S.: Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids 111, 134–156 (2018)MathSciNetMATHCrossRefADS Mashayekhi, S., Miles, P., Hussaini, M.Y., Oates, W.S.: Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids 111, 134–156 (2018)MathSciNetMATHCrossRefADS
76.
go back to reference Mashayekhi, S., Hussaini, M.Y., Oates, W.S.: A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J. Mech. Phys. Solids 128, 137–150 (2019)MathSciNetCrossRefADS Mashayekhi, S., Hussaini, M.Y., Oates, W.S.: A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J. Mech. Phys. Solids 128, 137–150 (2019)MathSciNetCrossRefADS
77.
go back to reference Mashayekhi, S., Beerli, P.: Fractional coalescent. Proc. Nat. Acad. Sci. 116, 6244–6249 (2019)CrossRef Mashayekhi, S., Beerli, P.: Fractional coalescent. Proc. Nat. Acad. Sci. 116, 6244–6249 (2019)CrossRef
78.
79.
go back to reference Oates, W., Stanisaukis, E., Pahari, B.R., Mashayekhi, S.: Entropy dynamics approach to fractional order mechanics with applications to elastomers. Behav. Mech. Multifunct. Mater. XV 15, 1158905 (2021) Oates, W., Stanisaukis, E., Pahari, B.R., Mashayekhi, S.: Entropy dynamics approach to fractional order mechanics with applications to elastomers. Behav. Mech. Multifunct. Mater. XV 15, 1158905 (2021)
80.
go back to reference El-Nabulsi, R.A.: Some geometrical aspects of nonconservative autonomous Hamiltonian dynamical systems. Int. J. Appl. Math. Stat. 5, 50–61 (2006)MathSciNetMATH El-Nabulsi, R.A.: Some geometrical aspects of nonconservative autonomous Hamiltonian dynamical systems. Int. J. Appl. Math. Stat. 5, 50–61 (2006)MathSciNetMATH
81.
go back to reference El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. P134, 192 (2019) El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. P134, 192 (2019)
82.
go back to reference El-Nabulsi, R.A.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos Solitons Fractals 42, 52–61 (2009)MathSciNetMATHCrossRefADS El-Nabulsi, R.A.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos Solitons Fractals 42, 52–61 (2009)MathSciNetMATHCrossRefADS
83.
go back to reference El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order (\(\alpha,\beta \)) and dynamical fractional integral exponent. Afr. Diasp. J. Math. 13, 56–61 (2012)MathSciNetMATH El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order (\(\alpha,\beta \)) and dynamical fractional integral exponent. Afr. Diasp. J. Math. 13, 56–61 (2012)MathSciNetMATH
85.
go back to reference You, J., Lu, Z., Yang, Y.: Anisotropic velocity statistics and vortex surfaces in turbulent premixed combustion. Acta Aerodyn. Sinica 38, 603–610 (2020) You, J., Lu, Z., Yang, Y.: Anisotropic velocity statistics and vortex surfaces in turbulent premixed combustion. Acta Aerodyn. Sinica 38, 603–610 (2020)
86.
go back to reference Belmont, M.R., Haviland, J.S., Thomas, J., Hacohen, J., Thurley, R.: Methods for examining anisotropies in early combustion, Part I: Multi-scale experimental determinations. Combust. Sci. Tech. 108, 149–173 (1995)CrossRef Belmont, M.R., Haviland, J.S., Thomas, J., Hacohen, J., Thurley, R.: Methods for examining anisotropies in early combustion, Part I: Multi-scale experimental determinations. Combust. Sci. Tech. 108, 149–173 (1995)CrossRef
87.
go back to reference Ijioma, E.R., Munteam, A., Ogawa, T.: Effect of material anisotropy on the fingering instability in reverse smoldering combustion. Int. J. Heat Mass Transf. 81, 924–938 (2015)CrossRef Ijioma, E.R., Munteam, A., Ogawa, T.: Effect of material anisotropy on the fingering instability in reverse smoldering combustion. Int. J. Heat Mass Transf. 81, 924–938 (2015)CrossRef
88.
go back to reference Poludnenko, A.Y.: Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 27, 014106 (2015)CrossRefADS Poludnenko, A.Y.: Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 27, 014106 (2015)CrossRefADS
89.
go back to reference Tori, S.: Thermal transport phenomena of turbulent jet diffusion flames by means of anisotropic \(k\)-\(\epsilon \)-\(t^{2}\)-\(\epsilon _{t}\) model. Int. J. Energy Res. 23, 989–998 (1999)CrossRef Tori, S.: Thermal transport phenomena of turbulent jet diffusion flames by means of anisotropic \(k\)-\(\epsilon \)-\(t^{2}\)-\(\epsilon _{t}\) model. Int. J. Energy Res. 23, 989–998 (1999)CrossRef
90.
go back to reference Treurniet, T.C., Nieuwstadt, F.T.M., Boersma, B.J.: Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation. J. Fluid Mech. 565, 25–62 (2006)MathSciNetMATHCrossRefADS Treurniet, T.C., Nieuwstadt, F.T.M., Boersma, B.J.: Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation. J. Fluid Mech. 565, 25–62 (2006)MathSciNetMATHCrossRefADS
91.
go back to reference Najm, H.N., Wyckoff, P.S., Knio, O.M.A.: A semi-implicit numerical scheme for reacting flow: I. Stiff chemistry. J. Comput. Phys. 143, 381–402 (1998)MathSciNetMATHCrossRefADS Najm, H.N., Wyckoff, P.S., Knio, O.M.A.: A semi-implicit numerical scheme for reacting flow: I. Stiff chemistry. J. Comput. Phys. 143, 381–402 (1998)MathSciNetMATHCrossRefADS
92.
go back to reference Savard, B.: Characterization and modeling of premixed turbulent n-heptane flames in the thin reaction zone regime, PhD thesis, California Institute of Technology, Pasadena, California, (2015) Savard, B.: Characterization and modeling of premixed turbulent n-heptane flames in the thin reaction zone regime, PhD thesis, California Institute of Technology, Pasadena, California, (2015)
93.
go back to reference Williams, F. A.: Combustion Theory, 2\(^{nd}\) Edition. Addison-Wesley, (1985) Williams, F. A.: Combustion Theory, 2\(^{nd}\) Edition. Addison-Wesley, (1985)
94.
go back to reference Xuan, Y., Blanquart, G.: Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combust. Flame 160, 1657–1666 (2013)CrossRef Xuan, Y., Blanquart, G.: Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combust. Flame 160, 1657–1666 (2013)CrossRef
95.
go back to reference Chen, C., Riley, J.J., McMurtry, P.A.: A study of Favre averaging in turbulent flows with chemical reaction. Combust. Flame 87, 257–277 (1991)CrossRefADS Chen, C., Riley, J.J., McMurtry, P.A.: A study of Favre averaging in turbulent flows with chemical reaction. Combust. Flame 87, 257–277 (1991)CrossRefADS
96.
go back to reference Altimira, K. C.: Numerical simulation of non-premixed laminar and turbulent flames by means of flamelet modeling approaches, PhD thesis, Universitat Politecnica de Catalunya, (2005) Altimira, K. C.: Numerical simulation of non-premixed laminar and turbulent flames by means of flamelet modeling approaches, PhD thesis, Universitat Politecnica de Catalunya, (2005)
97.
go back to reference Abdel-Gayed, R., Bradley, D.: Combustion regimes and the straining of turbulent premixed flames. Combust. Flame 76, 213–218 (1989)CrossRef Abdel-Gayed, R., Bradley, D.: Combustion regimes and the straining of turbulent premixed flames. Combust. Flame 76, 213–218 (1989)CrossRef
98.
go back to reference Altantzis, C., Frouzakis, C., Tomboulides, A., Matalon, M., Boulouchos, K.: Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700, 329–361 (2012)MATHCrossRefADS Altantzis, C., Frouzakis, C., Tomboulides, A., Matalon, M., Boulouchos, K.: Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700, 329–361 (2012)MATHCrossRefADS
99.
go back to reference Chakraborty, N., Cant, R.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, R.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef
100.
go back to reference Chen, Z., Burke, M.P., Ju, Y.: Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Comb. Inst. 32, 1253–1260 (2009)CrossRef Chen, Z., Burke, M.P., Ju, Y.: Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Comb. Inst. 32, 1253–1260 (2009)CrossRef
101.
go back to reference Daniele, S., Mantzaras, J., Jansohn, P., Denisov, A., Boulouchos, K.: Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures. J. Fluid Mech. 724, 36–68 (2013)MATHCrossRefADS Daniele, S., Mantzaras, J., Jansohn, P., Denisov, A., Boulouchos, K.: Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures. J. Fluid Mech. 724, 36–68 (2013)MATHCrossRefADS
102.
go back to reference Peters, N.: Combustion Theory, Lectures given at CEFRC Summer School at Princeton University, June 28\(^{th}\)-July 2\(^{nd}\), (2010) Peters, N.: Combustion Theory, Lectures given at CEFRC Summer School at Princeton University, June 28\(^{th}\)-July 2\(^{nd}\), (2010)
103.
go back to reference Popkov, A.N., Chapman-Rubesin method in boundary layer theory, Aviatsionnaia Tekhnika 18. 90–93. Soviet Aeronautics 8(1975), 72–75 (1975) Popkov, A.N., Chapman-Rubesin method in boundary layer theory, Aviatsionnaia Tekhnika 18. 90–93. Soviet Aeronautics 8(1975), 72–75 (1975)
104.
go back to reference Gavish, B.: Position-dependent viscosity effects on rate coefficients. Phys. Rev. Lett. 44, 1160 (1980)CrossRefADS Gavish, B.: Position-dependent viscosity effects on rate coefficients. Phys. Rev. Lett. 44, 1160 (1980)CrossRefADS
105.
go back to reference Zhang, J., Todd, B.D., Travis, K.P.: Viscosity of confined inhomogeneous nonequilibrium fluids. J. Chem. Phys. 121, 10778 (2004)CrossRefADS Zhang, J., Todd, B.D., Travis, K.P.: Viscosity of confined inhomogeneous nonequilibrium fluids. J. Chem. Phys. 121, 10778 (2004)CrossRefADS
106.
go back to reference Xi, Z., Fu, Z., Hu, X., Sabir, S.W., Jiang, Y.: An investigation on flame shape and size for a high-pressure turbulent non-premixed swirl combustion. Energies 11, 930 (2018)CrossRef Xi, Z., Fu, Z., Hu, X., Sabir, S.W., Jiang, Y.: An investigation on flame shape and size for a high-pressure turbulent non-premixed swirl combustion. Energies 11, 930 (2018)CrossRef
107.
go back to reference Kang, S.H., Im, H.G., Baek, W.W.: A computational study of Saffman-Taylor instability in premixed flames. Combust. Theor. Model. 7, 343–363 (2003)CrossRefADS Kang, S.H., Im, H.G., Baek, W.W.: A computational study of Saffman-Taylor instability in premixed flames. Combust. Theor. Model. 7, 343–363 (2003)CrossRefADS
109.
go back to reference Han, Y., Modestov, M., Valiev, D.M.: Effect of momentum and heat losses on the hydrodynamic instability of a premixed equidiffusive flame in a Hele-Shaw cell. Phys. Fluids 33, 103608 (2021)CrossRefADS Han, Y., Modestov, M., Valiev, D.M.: Effect of momentum and heat losses on the hydrodynamic instability of a premixed equidiffusive flame in a Hele-Shaw cell. Phys. Fluids 33, 103608 (2021)CrossRefADS
110.
go back to reference Anjali Devi, S.P., Prakash, M.: Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J. Nigerian Math. Soc. 34, 318–330 (2015)MathSciNetMATHCrossRef Anjali Devi, S.P., Prakash, M.: Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J. Nigerian Math. Soc. 34, 318–330 (2015)MathSciNetMATHCrossRef
111.
go back to reference Hassanien, I., Essawy, A., Moursy, N.: Variable viscosity and thermal conductivity effects on combined heat and mass transfer in mixed convection over a UHF/UMF wedge in porous media: the entire regime. Appl. Math. Comput. 145, 667–682 (2003)MathSciNetMATH Hassanien, I., Essawy, A., Moursy, N.: Variable viscosity and thermal conductivity effects on combined heat and mass transfer in mixed convection over a UHF/UMF wedge in porous media: the entire regime. Appl. Math. Comput. 145, 667–682 (2003)MathSciNetMATH
112.
go back to reference Khan, Y., Wu, Q., Faraz, N., Yildirim, A.: The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Comput. Math. Appl. 61, 3391–3399 (2011)MathSciNetMATHCrossRef Khan, Y., Wu, Q., Faraz, N., Yildirim, A.: The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Comput. Math. Appl. 61, 3391–3399 (2011)MathSciNetMATHCrossRef
113.
go back to reference Lotfizadeh Dehkordi, B., Shiller, P.J., Doll, G.L.: Pressure- and temperature-dependent viscosity measurements of lubricants with polymeric viscosity modifiers. Front. Mech. Eng. 5, 18 (2019)CrossRef Lotfizadeh Dehkordi, B., Shiller, P.J., Doll, G.L.: Pressure- and temperature-dependent viscosity measurements of lubricants with polymeric viscosity modifiers. Front. Mech. Eng. 5, 18 (2019)CrossRef
114.
go back to reference Griffiths, R.W.: Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech. 166, 115–138 (1986)CrossRefADS Griffiths, R.W.: Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech. 166, 115–138 (1986)CrossRefADS
115.
go back to reference Garby, R., Selle, L., Poinsot, T.: Large-Eddy Simulation of combustion instabilities in a variable-length combustor. Compt. Rend. Mec. 341, 220–229 (2013)ADS Garby, R., Selle, L., Poinsot, T.: Large-Eddy Simulation of combustion instabilities in a variable-length combustor. Compt. Rend. Mec. 341, 220–229 (2013)ADS
116.
go back to reference Schildmacher, K.-U., Hoffman, A., Selle, L., Koch, R., Schulz, C., Bauer, H.-J., Poinsot, T.: Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proc. Combust. Inst. 31, 3197–3205 (2007)CrossRef Schildmacher, K.-U., Hoffman, A., Selle, L., Koch, R., Schulz, C., Bauer, H.-J., Poinsot, T.: Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proc. Combust. Inst. 31, 3197–3205 (2007)CrossRef
117.
go back to reference Kang, Y., Lu, T., Lu, X., Gou, X., Huang, X., Peng, S., Ji, X., Zhou, Y., Song, Y.: On predicting the length, width, and volume of the jet diffusion flame. Appl. Therm. Eng. 94, 799–812 (2016)CrossRef Kang, Y., Lu, T., Lu, X., Gou, X., Huang, X., Peng, S., Ji, X., Zhou, Y., Song, Y.: On predicting the length, width, and volume of the jet diffusion flame. Appl. Therm. Eng. 94, 799–812 (2016)CrossRef
118.
go back to reference Pitsch, H.: Turbulent Non-Premixed Combustion, Lectures given at CEFRC Combustion Summer School. RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen), Inst. Tech. Verbrennung (2014) Pitsch, H.: Turbulent Non-Premixed Combustion, Lectures given at CEFRC Combustion Summer School. RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen), Inst. Tech. Verbrennung (2014)
119.
go back to reference Adams, B.R., Smith, P.J.: Modeling effects of soot and radiative transfer in turbulent gaseous combustion. Combust. Sci. Tech. 109, 121–140 (1995)CrossRef Adams, B.R., Smith, P.J.: Modeling effects of soot and radiative transfer in turbulent gaseous combustion. Combust. Sci. Tech. 109, 121–140 (1995)CrossRef
120.
go back to reference Peters, N.: Laminar and Turbulent Combustion, Lectures given at Ercoftac Summer School September 14–28. Aachen, Germany (1992) Peters, N.: Laminar and Turbulent Combustion, Lectures given at Ercoftac Summer School September 14–28. Aachen, Germany (1992)
121.
go back to reference Ajibade, A.O., Tafida, M.K.: The combined effect of variable viscosity and variable thermal conductivity on natural convection couette flow. Int. J. Thermofluids 5–6, 100036 (2020)CrossRef Ajibade, A.O., Tafida, M.K.: The combined effect of variable viscosity and variable thermal conductivity on natural convection couette flow. Int. J. Thermofluids 5–6, 100036 (2020)CrossRef
122.
go back to reference Tam, K.K.: Criticality dependence on data and parameters for a problem in combustion theory, with temperature-dependent conductivity. ANZIAM J. 31, 76–80 (1989)MathSciNetMATH Tam, K.K.: Criticality dependence on data and parameters for a problem in combustion theory, with temperature-dependent conductivity. ANZIAM J. 31, 76–80 (1989)MathSciNetMATH
123.
go back to reference Peters, N., Williams, F.A.: Asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68, 185–207 (1987)CrossRef Peters, N., Williams, F.A.: Asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68, 185–207 (1987)CrossRef
124.
go back to reference Gottgens, J., Terhoeven, P., Peters, N.: Calculation of lean flammability limits based on analytical approximations of burning velocities. Bull. Soc. Chim. Belg. 101, 885–891 (1992) Gottgens, J., Terhoeven, P., Peters, N.: Calculation of lean flammability limits based on analytical approximations of burning velocities. Bull. Soc. Chim. Belg. 101, 885–891 (1992)
125.
go back to reference Abramowitz, M., Stegun, I. A.: (Eds.), Exponential Integral and Related Functions, Ch. 6.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, (1972) Abramowitz, M., Stegun, I. A.: (Eds.), Exponential Integral and Related Functions, Ch. 6.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, (1972)
126.
go back to reference Peters, N.: Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames. Lect. Notes Phys. 241, 90–109 (1985)CrossRefADS Peters, N.: Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames. Lect. Notes Phys. 241, 90–109 (1985)CrossRefADS
127.
go back to reference Noguchi, Y., Nakamura, K., Hagiwara, Y., Hitomi, S., Kuwana, K.: Flame propagation and fractal dimension in a concentric double cylinder apparatus. J. JSEM 14, s101–s104 (2014) Noguchi, Y., Nakamura, K., Hagiwara, Y., Hitomi, S., Kuwana, K.: Flame propagation and fractal dimension in a concentric double cylinder apparatus. J. JSEM 14, s101–s104 (2014)
128.
go back to reference Kulkami, T., Bisetti, F.: Surface morphology and inner fractal cutoff scale of spherical turbulent premixed fames in decaying isotropic turbulence. Proc. Combust. Inst. 38, 2861–2868 (2021)CrossRef Kulkami, T., Bisetti, F.: Surface morphology and inner fractal cutoff scale of spherical turbulent premixed fames in decaying isotropic turbulence. Proc. Combust. Inst. 38, 2861–2868 (2021)CrossRef
129.
go back to reference Cintosum, E., Smallwood, G.J., Gulder, O.L.: Flame surface fractal characteristics in premixed turbulence combustion at high turbulence intensities. AIAA J. 45, 2785–2789 (2007)CrossRefADS Cintosum, E., Smallwood, G.J., Gulder, O.L.: Flame surface fractal characteristics in premixed turbulence combustion at high turbulence intensities. AIAA J. 45, 2785–2789 (2007)CrossRefADS
130.
go back to reference Cheng, T.S., Chen, C.-P., Chen, C.-S., Li, Y.-H., Wu, C.-Y., Chao, Y.-C.: Characteristics of microjet methane diffusion flames. Combust. Theor. Model. 10, 861–881 (2006)MATHCrossRefADS Cheng, T.S., Chen, C.-P., Chen, C.-S., Li, Y.-H., Wu, C.-Y., Chao, Y.-C.: Characteristics of microjet methane diffusion flames. Combust. Theor. Model. 10, 861–881 (2006)MATHCrossRefADS
131.
go back to reference Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamics SGS combustion model for large Eddy simulation of turbulent premixed flame. Combust. Sci. Tech. 188, 1472–1495 (2016)CrossRef Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamics SGS combustion model for large Eddy simulation of turbulent premixed flame. Combust. Sci. Tech. 188, 1472–1495 (2016)CrossRef
132.
go back to reference Kertstein, A.R.: Fractal dimension of turbulent premixed flames. Combust. Sci. Tech. 60, 441–445 (1988)CrossRef Kertstein, A.R.: Fractal dimension of turbulent premixed flames. Combust. Sci. Tech. 60, 441–445 (1988)CrossRef
133.
go back to reference Bychkov, V.: Flame front instabilities and development of fractal flames, in Emergent Nature: Patterns, Growth and Scaling in the Life Sciences, 247-254, (2002), World Scientific, Editor M. M. Novak, Singapore Bychkov, V.: Flame front instabilities and development of fractal flames, in Emergent Nature: Patterns, Growth and Scaling in the Life Sciences, 247-254, (2002), World Scientific, Editor M. M. Novak, Singapore
134.
go back to reference Golub, V. V., Volodin, V. V.: On the description of the turbulent flame acceleration with Kolmogorov law, J. Phys.: Conf. Ser. 946, 012065 (2018) Golub, V. V., Volodin, V. V.: On the description of the turbulent flame acceleration with Kolmogorov law, J. Phys.: Conf. Ser. 946, 012065 (2018)
135.
go back to reference Searby, G.: Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221–231 (1992)CrossRef Searby, G.: Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221–231 (1992)CrossRef
136.
go back to reference Searby, G., Rochwerger, D.: A parametric acoustic instability in premixed flame. J. Fluid Mech. 231, 529–543 (1991)MATHCrossRefADS Searby, G., Rochwerger, D.: A parametric acoustic instability in premixed flame. J. Fluid Mech. 231, 529–543 (1991)MATHCrossRefADS
137.
go back to reference Quinard, J., Searby, G., Denet, B., Grana-Otero, J.: Self-turbulent flame speeds. Flow Turbul. Combust. 89, 231–247 (2012)MATHCrossRef Quinard, J., Searby, G., Denet, B., Grana-Otero, J.: Self-turbulent flame speeds. Flow Turbul. Combust. 89, 231–247 (2012)MATHCrossRef
138.
go back to reference Cambray, P., Joulin, G.: On a scaling law for coarsening cells of premixed flames: an approach to fractalization. Combust. Sci. Technol. 161, 139–164 (2000)CrossRef Cambray, P., Joulin, G.: On a scaling law for coarsening cells of premixed flames: an approach to fractalization. Combust. Sci. Technol. 161, 139–164 (2000)CrossRef
139.
go back to reference Travnikov, O.Y., Bychkov, V.V., Liberman, M.A.: Numerical studies of flames in wide tubes: Stability limits of curved stationary flames. Phys. Rev. E 61, 468–474 (2000)CrossRefADS Travnikov, O.Y., Bychkov, V.V., Liberman, M.A.: Numerical studies of flames in wide tubes: Stability limits of curved stationary flames. Phys. Rev. E 61, 468–474 (2000)CrossRefADS
140.
go back to reference Kaisare, N.S., Vlachos, D.G.: A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 38, 321–259 (2012)CrossRef Kaisare, N.S., Vlachos, D.G.: A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 38, 321–259 (2012)CrossRef
141.
go back to reference Ju, Y., Maruta, K.: Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37, 669–715 (2011)CrossRef Ju, Y., Maruta, K.: Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37, 669–715 (2011)CrossRef
142.
go back to reference Cova, A., Resende, P.R., Cuoci, A., Ayoobi, M., Afonso, A.M., Pinho, C.T.: Numerical studies of premixed and diffusion meso/micro-scale flames. Energy Proc. 120(6), 73–680 (2017) Cova, A., Resende, P.R., Cuoci, A., Ayoobi, M., Afonso, A.M., Pinho, C.T.: Numerical studies of premixed and diffusion meso/micro-scale flames. Energy Proc. 120(6), 73–680 (2017)
143.
go back to reference Conforto, F., Monaco, R., Ricciardello, A.: Analysis of steady combustion processes in a recombination reaction. Cont. Mech. Therm. 26, 503–619 (2014)MathSciNetMATHCrossRef Conforto, F., Monaco, R., Ricciardello, A.: Analysis of steady combustion processes in a recombination reaction. Cont. Mech. Therm. 26, 503–619 (2014)MathSciNetMATHCrossRef
144.
145.
go back to reference Conforto, F., Groppi, M., Monaco, R., Spiga, G.: Steady detonation waves for gases undergoing dissociation/recombination and bimolecular reactions. Cont. Mech. Therm. 16, 149–161 (2004)MathSciNetMATHCrossRef Conforto, F., Groppi, M., Monaco, R., Spiga, G.: Steady detonation waves for gases undergoing dissociation/recombination and bimolecular reactions. Cont. Mech. Therm. 16, 149–161 (2004)MathSciNetMATHCrossRef
146.
go back to reference Chen, F., Chien, S.-W., Lang, H.-M., Chang, W.-J.: Stack effects on smoke propagation in subway stations. Cont. Mech. Therm. 15, 425–440 (2003)MATHCrossRef Chen, F., Chien, S.-W., Lang, H.-M., Chang, W.-J.: Stack effects on smoke propagation in subway stations. Cont. Mech. Therm. 15, 425–440 (2003)MATHCrossRef
Metadata
Title
Modeling of combustion and turbulent jet diffusion flames in fractal dimensions
Authors
Rami Ahmad El-Nabulsi
Waranont Anukool
Publication date
25-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01116-5

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners