Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 13/2011

01-12-2011

Modeling of Microporosity Size Distribution in Aluminum Alloy A356

Authors: Lu Yao, Steve Cockcroft, Jindong Zhu, Carl Reilly

Published in: Metallurgical and Materials Transactions A | Issue 13/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
SCANCO MEDICAL MICRO-CT is a trademark of SCANCO USA, Inc., Southeastern, PA.
 
2
AMIRA is a trademark of Visage Imaging GmbH, Berlin, Germany.
 
Literature
1.
go back to reference A.A. Dabaye, R.X. Xu, B.P. Du, and T.H. Topper: Int. J. Fatigue, 1996, vol. 18 (2), pp. 95–104.CrossRef A.A. Dabaye, R.X. Xu, B.P. Du, and T.H. Topper: Int. J. Fatigue, 1996, vol. 18 (2), pp. 95–104.CrossRef
2.
go back to reference X. Zhu, J.Z. Yi, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1111–23.CrossRef X. Zhu, J.Z. Yi, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1111–23.CrossRef
3.
go back to reference O. Lashkari, L. Yao, S. Cockcroft, and D. Maijer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 991–99.CrossRef O. Lashkari, L. Yao, S. Cockcroft, and D. Maijer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 991–99.CrossRef
4.
go back to reference G. Nicoletto, G. Anzelotti, and R. Konecna: Procedia Eng., 2010, vol. 2, pp. 547–54.CrossRef G. Nicoletto, G. Anzelotti, and R. Konecna: Procedia Eng., 2010, vol. 2, pp. 547–54.CrossRef
5.
go back to reference H.R. Ammar, A.M. Samuel, and F.H. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, pp. 65–75.CrossRef H.R. Ammar, A.M. Samuel, and F.H. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, pp. 65–75.CrossRef
6.
go back to reference Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.CrossRef Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.CrossRef
7.
go back to reference K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 159–72.CrossRef K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 159–72.CrossRef
8.
go back to reference W. Ludwig, J.Y. Buffière, S. Savelli, and P. Cloetens: Acta Mater., 2003, vol. 51, pp. 585–98.CrossRef W. Ludwig, J.Y. Buffière, S. Savelli, and P. Cloetens: Acta Mater., 2003, vol. 51, pp. 585–98.CrossRef
9.
go back to reference P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley: Acta Mater., 2009, vol. 57, pp. 3539–48.CrossRef P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley: Acta Mater., 2009, vol. 57, pp. 3539–48.CrossRef
10.
go back to reference P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30.CrossRef P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30.CrossRef
11.
12.
go back to reference P.D. Lee and J.D. Hunt: Modeling of Casting, Welding, and Advanced Solidification Processes VII, Warrendale, PA, 1995, pp. 585–92. P.D. Lee and J.D. Hunt: Modeling of Casting, Welding, and Advanced Solidification Processes VII, Warrendale, PA, 1995, pp. 585–92.
13.
go back to reference R.C. Atwood and P.D. Lee: Modeling of Casting Welding and Advanced Solidification Processes IX, Aachen, Germany, 2000, pp. 2–9. R.C. Atwood and P.D. Lee: Modeling of Casting Welding and Advanced Solidification Processes IX, Aachen, Germany, 2000, pp. 2–9.
14.
go back to reference L. Yao, E. Khajeh, S.L. Cockcroft, and D.M. Maijer: Modeling of Casting, Welding and Advanced Solidification Processes XII, Vancouver, Canada, 2009, pp. 385–92. L. Yao, E. Khajeh, S.L. Cockcroft, and D.M. Maijer: Modeling of Casting, Welding and Advanced Solidification Processes XII, Vancouver, Canada, 2009, pp. 385–92.
15.
go back to reference S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Technol., 2004, vol. 20, pp. 194–200.CrossRef S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Technol., 2004, vol. 20, pp. 194–200.CrossRef
16.
go back to reference M. Massoud: Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, New York, NY, 2005, pp. 631–39. M. Massoud: Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, New York, NY, 2005, pp. 631–39.
17.
go back to reference J. Pryde and C.G. Titcomb: J. Phys. C: Solid State Phys., 1972, vol. 5, pp. 1293–1300.CrossRef J. Pryde and C.G. Titcomb: J. Phys. C: Solid State Phys., 1972, vol. 5, pp. 1293–1300.CrossRef
18.
go back to reference P. Anyalebechi: Scripta Metall. Mater., 1995, pp. 1209–16. P. Anyalebechi: Scripta Metall. Mater., 1995, pp. 1209–16.
19.
go back to reference H.B. Aaron, D. Fainstein, and G. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10.CrossRef H.B. Aaron, D. Fainstein, and G. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10.CrossRef
20.
go back to reference K.D. Carlson, Zhiping Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55. K.D. Carlson, Zhiping Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55.
21.
go back to reference S.V. Akhonin, N.P. Trigub, V.N. Zamkov, and S.L. Semiatin: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 447–54.CrossRef S.V. Akhonin, N.P. Trigub, V.N. Zamkov, and S.L. Semiatin: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 447–54.CrossRef
22.
go back to reference W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, pp. 165–66. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, pp. 165–66.
23.
go back to reference K. Tynelius, J.F. Major, and D. Apelian: AFS Trans., 1994, vol. 101, pp. 401–13. K. Tynelius, J.F. Major, and D. Apelian: AFS Trans., 1994, vol. 101, pp. 401–13.
24.
go back to reference R. Fuoco, H. Goldenstein, and J.E. Gruzleski: AFS Trans., 1994, vol. 102, pp. 297–306. R. Fuoco, H. Goldenstein, and J.E. Gruzleski: AFS Trans., 1994, vol. 102, pp. 297–306.
25.
go back to reference D. Emadi, J.E. Gruzleski, and M. Pekguleryuz: AFS Trans., 1996, vol. 104, pp. 763–68. D. Emadi, J.E. Gruzleski, and M. Pekguleryuz: AFS Trans., 1996, vol. 104, pp. 763–68.
26.
go back to reference B. Sun, W. Ding, D. Shu, and Y. Zhao: J. Cent. South Univ. Technol., 2004, vol. 11, pp. 134–41.CrossRef B. Sun, W. Ding, D. Shu, and Y. Zhao: J. Cent. South Univ. Technol., 2004, vol. 11, pp. 134–41.CrossRef
27.
go back to reference V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Proc. Technol., 2005, vol. 168, pp. 119–26.CrossRef V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Proc. Technol., 2005, vol. 168, pp. 119–26.CrossRef
28.
go back to reference P.L. Schaffer and A.K. Dahle: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 481–85.CrossRef P.L. Schaffer and A.K. Dahle: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 481–85.CrossRef
29.
go back to reference J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 356–63.CrossRef J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 356–63.CrossRef
30.
go back to reference J.F. Major: AFS Trans., 1997, vol. 105, pp. 901–06. J.F. Major: AFS Trans., 1997, vol. 105, pp. 901–06.
31.
go back to reference D. Emadi, J.E. Gruzleski, and J.M. Toguri: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 1055–63. D. Emadi, J.E. Gruzleski, and J.M. Toguri: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 1055–63.
32.
go back to reference Q.T. Fang and D.A. Granger: AFS Trans., 1989, vol. 97, pp. 989–1000. Q.T. Fang and D.A. Granger: AFS Trans., 1989, vol. 97, pp. 989–1000.
33.
go back to reference J. Campbell and M. Tiryakioglu: Mater. Sci. Technol., 2010, vol. 26, pp. 262–67.CrossRef J. Campbell and M. Tiryakioglu: Mater. Sci. Technol., 2010, vol. 26, pp. 262–67.CrossRef
34.
go back to reference C.M. Dinnis, M.O. Otte, A.K. Dahle, and J.A. Taylor: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3531–41.CrossRef C.M. Dinnis, M.O. Otte, A.K. Dahle, and J.A. Taylor: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3531–41.CrossRef
35.
go back to reference R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48 (2), pp. 405–17.CrossRef R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48 (2), pp. 405–17.CrossRef
36.
go back to reference J.D. Zhu, S.L. Cockcroft, and D.M. Maijer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1075–85.CrossRef J.D. Zhu, S.L. Cockcroft, and D.M. Maijer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1075–85.CrossRef
Metadata
Title
Modeling of Microporosity Size Distribution in Aluminum Alloy A356
Authors
Lu Yao
Steve Cockcroft
Jindong Zhu
Carl Reilly
Publication date
01-12-2011
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 13/2011
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0811-z

Other articles of this Issue 13/2011

Metallurgical and Materials Transactions A 13/2011 Go to the issue

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Effects of Vacancies on the Onset of Plasticity in Metals—An Atomistic Simulation Study

Premium Partners