Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 13/2011

01-12-2011

Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting

Authors: Ya-Jun Su, Xin-Hua Liu, Hai-You Huang, Xue-Feng Liu, Jian-Xin Xie

Published in: Metallurgical and Materials Transactions A | Issue 13/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Copper cladding aluminum (CCA) rods with a diameter of 30 mm and a sheath thickness of 3 mm were fabricated by horizontal core-filling continuous casting (HCFC) technology. The microstructure and morphology, distribution of chemical components, and phase composition of the interface between Cu and Al were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS). The formation mechanism of the interface and the effects of key processing parameters, e.g., aluminum casting temperature, secondary cooling intensity, and mean withdrawing speed on the interfacial microstructure and bonding strength were investigated. The results show that the CCA rod has a multilayered interface, which is composed of three sublayers—sublayer I is Cu9Al4 layer, sublayer II is CuAl2 layer, and sublayer III is composed of α-Al/CuAl2 pseudo eutectic. The thickness of sublayer III, which occupies 92 to 99 pct of the total thickness of the interface, is much larger than the thicknesses of sublayers I and II. However, the interfacial bonding strength is dominated by the thicknesses of sublayers I and II; i.e., the bonding strength decreases with the rise of the thicknesses of sublayers I and II. When raising the aluminum casting temperature, the total thickness of the interface increases while the thicknesses of sublayers I and II decrease and the bonding strength increases. Either augmenting the secondary cooling intensity or increasing the mean withdrawing speed results in the decrease in both total thickness of the interface and the thicknesses of sublayers I and II, and an increase in the interfacial bonding strength. The CCA rod with the largest interfacial bonding strength of 67.9 ± 0.5 MPa was fabricated under such processing parameters as copper casting temperature 1503 K (1230 °C), aluminum casting temperature 1063 K (790 °C), primary cooling water flux 600 L/h, secondary cooling water flux 700 L/h, and mean withdrawing speed 87 mm/min. The total thickness of the interface of the CCA rod fabricated under the preceding processing parameters is about 75 μm, while the thicknesses of sublayers I and II are about 1.1 and 0.1 μm, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Perrard: Wire J. Int., 2001, vol. 34, pp. 154–59. W. Perrard: Wire J. Int., 2001, vol. 34, pp. 154–59.
2.
go back to reference K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim: Mater. Sci. Eng. A, 2004, vol. 384, pp. 70–76.CrossRef K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim: Mater. Sci. Eng. A, 2004, vol. 384, pp. 70–76.CrossRef
3.
go back to reference A. Gibson: Wire J. Int., 2007, vol. 40, p. 73. A. Gibson: Wire J. Int., 2007, vol. 40, p. 73.
4.
go back to reference A. Gibson: Wire J. Int., 2008, vol. 41, pp. 142–48. A. Gibson: Wire J. Int., 2008, vol. 41, pp. 142–48.
5.
go back to reference N. Kazuyuki: ISIJ Int., 1997, vol. 7, pp. 899–905. N. Kazuyuki: ISIJ Int., 1997, vol. 7, pp. 899–905.
6.
go back to reference M. Hiderita, T. Yamaguchi, and T. Takayama: U.S. Patent US03854193A, 1974-12-17. M. Hiderita, T. Yamaguchi, and T. Takayama: U.S. Patent US03854193A, 1974-12-17.
7.
8.
go back to reference J.X. Xie, C.J. Wu, C. Zhou, and Z.D. Wang: China Patent No. ZL01109076.6, 2003. J.X. Xie, C.J. Wu, C. Zhou, and Z.D. Wang: China Patent No. ZL01109076.6, 2003.
9.
go back to reference J.X. Xie, C.J. Wu, X.F. Liu, and X.H. Liu: Mater. Sci. Forum, 2007, vols. 539–543, pp. 956–61. J.X. Xie, C.J. Wu, X.F. Liu, and X.H. Liu: Mater. Sci. Forum, 2007, vols. 539–543, pp. 956–61.
10.
go back to reference J.X. Xie, X.H. Liu, X.F. Liu, and Y.J. Su: China Patent ZL200610112817.3, 2008. J.X. Xie, X.H. Liu, X.F. Liu, and Y.J. Su: China Patent ZL200610112817.3, 2008.
11.
go back to reference Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 104–13. Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 104–13.
12.
go back to reference X.K. Peng, R. Wuhrer, G. Heness, and W.Y. Yeung: J. Mater. Sci., 1999, vol. 34, pp. 2029–38.CrossRef X.K. Peng, R. Wuhrer, G. Heness, and W.Y. Yeung: J. Mater. Sci., 1999, vol. 34, pp. 2029–38.CrossRef
13.
go back to reference M. Abbasi, T. Karimi, and M.T. Salehi: J. Alloys Compd., 2001, vol. 319, pp. 233–41CrossRef M. Abbasi, T. Karimi, and M.T. Salehi: J. Alloys Compd., 2001, vol. 319, pp. 233–41CrossRef
14.
go back to reference G. Heness, R. Wuhrer, and W.Y. Yeung: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 740–42. G. Heness, R. Wuhrer, and W.Y. Yeung: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 740–42.
15.
go back to reference Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 471. Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 471.
16.
go back to reference D. Moreno, J. Garrett, and J.D. Embury: Intermetallics, 1999, vol. 7, pp. 1001–09.CrossRef D. Moreno, J. Garrett, and J.D. Embury: Intermetallics, 1999, vol. 7, pp. 1001–09.CrossRef
17.
go back to reference Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 184. Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 184.
Metadata
Title
Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting
Authors
Ya-Jun Su
Xin-Hua Liu
Hai-You Huang
Xue-Feng Liu
Jian-Xin Xie
Publication date
01-12-2011
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 13/2011
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0785-x

Other articles of this Issue 13/2011

Metallurgical and Materials Transactions A 13/2011 Go to the issue

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Multiscale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand Nanocomposites

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

Premium Partners