Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 13/2011

01.12.2011

Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting

verfasst von: Ya-Jun Su, Xin-Hua Liu, Hai-You Huang, Xue-Feng Liu, Jian-Xin Xie

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 13/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Copper cladding aluminum (CCA) rods with a diameter of 30 mm and a sheath thickness of 3 mm were fabricated by horizontal core-filling continuous casting (HCFC) technology. The microstructure and morphology, distribution of chemical components, and phase composition of the interface between Cu and Al were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS). The formation mechanism of the interface and the effects of key processing parameters, e.g., aluminum casting temperature, secondary cooling intensity, and mean withdrawing speed on the interfacial microstructure and bonding strength were investigated. The results show that the CCA rod has a multilayered interface, which is composed of three sublayers—sublayer I is Cu9Al4 layer, sublayer II is CuAl2 layer, and sublayer III is composed of α-Al/CuAl2 pseudo eutectic. The thickness of sublayer III, which occupies 92 to 99 pct of the total thickness of the interface, is much larger than the thicknesses of sublayers I and II. However, the interfacial bonding strength is dominated by the thicknesses of sublayers I and II; i.e., the bonding strength decreases with the rise of the thicknesses of sublayers I and II. When raising the aluminum casting temperature, the total thickness of the interface increases while the thicknesses of sublayers I and II decrease and the bonding strength increases. Either augmenting the secondary cooling intensity or increasing the mean withdrawing speed results in the decrease in both total thickness of the interface and the thicknesses of sublayers I and II, and an increase in the interfacial bonding strength. The CCA rod with the largest interfacial bonding strength of 67.9 ± 0.5 MPa was fabricated under such processing parameters as copper casting temperature 1503 K (1230 °C), aluminum casting temperature 1063 K (790 °C), primary cooling water flux 600 L/h, secondary cooling water flux 700 L/h, and mean withdrawing speed 87 mm/min. The total thickness of the interface of the CCA rod fabricated under the preceding processing parameters is about 75 μm, while the thicknesses of sublayers I and II are about 1.1 and 0.1 μm, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Perrard: Wire J. Int., 2001, vol. 34, pp. 154–59. W. Perrard: Wire J. Int., 2001, vol. 34, pp. 154–59.
2.
Zurück zum Zitat K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim: Mater. Sci. Eng. A, 2004, vol. 384, pp. 70–76.CrossRef K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim: Mater. Sci. Eng. A, 2004, vol. 384, pp. 70–76.CrossRef
3.
Zurück zum Zitat A. Gibson: Wire J. Int., 2007, vol. 40, p. 73. A. Gibson: Wire J. Int., 2007, vol. 40, p. 73.
4.
Zurück zum Zitat A. Gibson: Wire J. Int., 2008, vol. 41, pp. 142–48. A. Gibson: Wire J. Int., 2008, vol. 41, pp. 142–48.
5.
Zurück zum Zitat N. Kazuyuki: ISIJ Int., 1997, vol. 7, pp. 899–905. N. Kazuyuki: ISIJ Int., 1997, vol. 7, pp. 899–905.
6.
Zurück zum Zitat M. Hiderita, T. Yamaguchi, and T. Takayama: U.S. Patent US03854193A, 1974-12-17. M. Hiderita, T. Yamaguchi, and T. Takayama: U.S. Patent US03854193A, 1974-12-17.
7.
Zurück zum Zitat N.F. Neumann: U.S. Patent 3421569, 1969. N.F. Neumann: U.S. Patent 3421569, 1969.
8.
Zurück zum Zitat J.X. Xie, C.J. Wu, C. Zhou, and Z.D. Wang: China Patent No. ZL01109076.6, 2003. J.X. Xie, C.J. Wu, C. Zhou, and Z.D. Wang: China Patent No. ZL01109076.6, 2003.
9.
Zurück zum Zitat J.X. Xie, C.J. Wu, X.F. Liu, and X.H. Liu: Mater. Sci. Forum, 2007, vols. 539–543, pp. 956–61. J.X. Xie, C.J. Wu, X.F. Liu, and X.H. Liu: Mater. Sci. Forum, 2007, vols. 539–543, pp. 956–61.
10.
Zurück zum Zitat J.X. Xie, X.H. Liu, X.F. Liu, and Y.J. Su: China Patent ZL200610112817.3, 2008. J.X. Xie, X.H. Liu, X.F. Liu, and Y.J. Su: China Patent ZL200610112817.3, 2008.
11.
Zurück zum Zitat Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 104–13. Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 104–13.
12.
Zurück zum Zitat X.K. Peng, R. Wuhrer, G. Heness, and W.Y. Yeung: J. Mater. Sci., 1999, vol. 34, pp. 2029–38.CrossRef X.K. Peng, R. Wuhrer, G. Heness, and W.Y. Yeung: J. Mater. Sci., 1999, vol. 34, pp. 2029–38.CrossRef
13.
Zurück zum Zitat M. Abbasi, T. Karimi, and M.T. Salehi: J. Alloys Compd., 2001, vol. 319, pp. 233–41CrossRef M. Abbasi, T. Karimi, and M.T. Salehi: J. Alloys Compd., 2001, vol. 319, pp. 233–41CrossRef
14.
Zurück zum Zitat G. Heness, R. Wuhrer, and W.Y. Yeung: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 740–42. G. Heness, R. Wuhrer, and W.Y. Yeung: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 740–42.
15.
Zurück zum Zitat Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 471. Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 471.
16.
Zurück zum Zitat D. Moreno, J. Garrett, and J.D. Embury: Intermetallics, 1999, vol. 7, pp. 1001–09.CrossRef D. Moreno, J. Garrett, and J.D. Embury: Intermetallics, 1999, vol. 7, pp. 1001–09.CrossRef
17.
Zurück zum Zitat Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 184. Japan Institute of Metals: Metals Data Book, Maruzen Co., Ltd., Tokyo, 1993, p. 184.
Metadaten
Titel
Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting
verfasst von
Ya-Jun Su
Xin-Hua Liu
Hai-You Huang
Xue-Feng Liu
Jian-Xin Xie
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 13/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0785-x

Weitere Artikel der Ausgabe 13/2011

Metallurgical and Materials Transactions A 13/2011 Zur Ausgabe

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Multiscale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand Nanocomposites

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.