Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 13/2011

01.12.2011

Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel

verfasst von: V. D. Manvatkar, A. A. Gokhale, G. Jagan Reddy, A. Venkataramana, A. De

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 13/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser engineered net shaping (LENS) and other similar processes facilitate building of parts with freeform shapes by melting and deposition of metallic powders layer by layer. A-priori estimation of the layerwise variations in peak temperature, build dimension, cooling rate, and mechanical property is requisite for successful application of these processes. We present here an integrated approach to estimate these build attributes. A three-dimensional (3-D) heat transfer analysis based on the finite element method is developed to compute the layerwise variation in thermal cycles and melt pool dimensions in the single-line multilayer wall structure of austenitic stainless steel. The computed values of cooling rates during solidification are used to estimate the layerwise variation in cell spacing of the solidified structure. A Hall–Petch like relation using cell size as the structural parameter is used next to estimate the layerwise hardness distribution. The predicted values of layer widths and build heights have depicted fair agreement with the corresponding measured values in actual deposits. The estimated values of layerwise cell spacing and hardness remain underpredicted and overpredicted, respectively. The slight underprediction of the cell spacing is attributed to the possible overestimation of the cooling rates that may have resulted due to the neglect of convective heat transport within the melt pool. The overprediction of the layerwise hardness is certainly due to the underprediction of corresponding cell spacing. The application of Hall–Petch coefficients, which is strictly valid for wrought and annealed grain structures, to estimate the hardness of as-solidified cellular structures may have also contributed to the overprediction of the layerwise hardness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.M. Keicher and K.E. Smugeresky: JOM, 1997, vol. 49 (5), pp. 51–54.CrossRef D.M. Keicher and K.E. Smugeresky: JOM, 1997, vol. 49 (5), pp. 51–54.CrossRef
2.
Zurück zum Zitat M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, and D.V. Nelson: Mater. Des., 1999, vol. 20 (2–3), pp. 107–13.CrossRef M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, and D.V. Nelson: Mater. Des., 1999, vol. 20 (2–3), pp. 107–13.CrossRef
3.
Zurück zum Zitat G.K. Lewis and E. Schlienger: Mater. Des., 2000, vol. 21 (4), pp. 417–23.CrossRef G.K. Lewis and E. Schlienger: Mater. Des., 2000, vol. 21 (4), pp. 417–23.CrossRef
4.
Zurück zum Zitat K.L. Schwender, R. Banerjee, P.C. Collins, C.A. Brice, and H.L. Fraser: Scripta Mater., 2001, vol. 45 (10), pp. 1123–29.CrossRef K.L. Schwender, R. Banerjee, P.C. Collins, C.A. Brice, and H.L. Fraser: Scripta Mater., 2001, vol. 45 (10), pp. 1123–29.CrossRef
5.
Zurück zum Zitat P.C. Collins, R. Banerjee, and H.L. Fraser: Scripta Mater., 2003, vol. 48 (10), pp. 1445–50.CrossRef P.C. Collins, R. Banerjee, and H.L. Fraser: Scripta Mater., 2003, vol. 48 (10), pp. 1445–50.CrossRef
6.
Zurück zum Zitat L. Wang and S. Felicelli: Mater. Sci. Eng. A, 2007, vol. 129 (6), pp. 1028–34. L. Wang and S. Felicelli: Mater. Sci. Eng. A, 2007, vol. 129 (6), pp. 1028–34.
7.
Zurück zum Zitat L. Costa, R. Vilar, T. Reti, and A. Deus: Acta Mater., 2005, vol. 53 (14), pp. 3987–99.CrossRef L. Costa, R. Vilar, T. Reti, and A. Deus: Acta Mater., 2005, vol. 53 (14), pp. 3987–99.CrossRef
8.
Zurück zum Zitat J. Choi and Y. Chang: Int. J. Mach. Tool Manuf., 2005, vol. 45 (4–5), pp. 597–607.CrossRef J. Choi and Y. Chang: Int. J. Mach. Tool Manuf., 2005, vol. 45 (4–5), pp. 597–607.CrossRef
9.
Zurück zum Zitat R.R. Unocic and J.N. DuPont: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 143–52.CrossRef R.R. Unocic and J.N. DuPont: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 143–52.CrossRef
10.
Zurück zum Zitat A. Vasinonta, J. Beuth, and M.L. Griffith: J. Manufact. Sci. Eng. Trans. ASME, 2001, vol. 123 (4), pp. 615–22.CrossRef A. Vasinonta, J. Beuth, and M.L. Griffith: J. Manufact. Sci. Eng. Trans. ASME, 2001, vol. 123 (4), pp. 615–22.CrossRef
11.
Zurück zum Zitat P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet: J. Phys. D Appl. Phys., 2008, vol. 41 (2), article no. 0254031, pp. 1–10. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet: J. Phys. D Appl. Phys., 2008, vol. 41 (2), article no. 0254031, pp. 1–10.
13.
Zurück zum Zitat B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2228–36.CrossRef B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2228–36.CrossRef
14.
Zurück zum Zitat S. Ghosh and J. Choi: J. Manufact. Sci. Eng. Trans. ASME, 2007, vol. 129 (2), pp. 319–32.CrossRef S. Ghosh and J. Choi: J. Manufact. Sci. Eng. Trans. ASME, 2007, vol. 129 (2), pp. 319–32.CrossRef
15.
Zurück zum Zitat S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1861–67.CrossRef S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1861–67.CrossRef
16.
Zurück zum Zitat B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.CrossRef B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.CrossRef
17.
Zurück zum Zitat J.E. Smugeresky, D.M. Keicher, J.A. Romero, M.L. Griffith, and L.D. Howell: DOI:10.2172/554828, Technical Report, Sandia National Laboratories, Livermore, CA, 1997. J.E. Smugeresky, D.M. Keicher, J.A. Romero, M.L. Griffith, and L.D. Howell: DOI:10.​2172/​554828, Technical Report, Sandia National Laboratories, Livermore, CA, 1997.
18.
Zurück zum Zitat Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2009, vol. 57 (18), pp. 5419–29.CrossRef Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2009, vol. 57 (18), pp. 5419–29.CrossRef
19.
Zurück zum Zitat Q. Xu, V.V. Gupta, and E.J. Lavernia: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 527–39.CrossRef Q. Xu, V.V. Gupta, and E.J. Lavernia: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 527–39.CrossRef
20.
Zurück zum Zitat J. Allison, M. Lei, C. Wolverton, and X. Su: JOM, 2006, vol. 58 (11), pp. 28–35.CrossRef J. Allison, M. Lei, C. Wolverton, and X. Su: JOM, 2006, vol. 58 (11), pp. 28–35.CrossRef
21.
Zurück zum Zitat J. Allison, D. BackMann, and L. Christodoulou: JOM, 2006, vol. 58 (11), pp. 25–27.CrossRef J. Allison, D. BackMann, and L. Christodoulou: JOM, 2006, vol. 58 (11), pp. 25–27.CrossRef
22.
Zurück zum Zitat V. Neela and A. De: Int. J. Adv. Manuf. Technol., 2009, vol. 45 (9–10), pp. 935–43.CrossRef V. Neela and A. De: Int. J. Adv. Manuf. Technol., 2009, vol. 45 (9–10), pp. 935–43.CrossRef
23.
Zurück zum Zitat S. Bag and A. De: Sci. Technol. Weld. Join., 2009, vol. 14 (4), pp. 333–45.CrossRef S. Bag and A. De: Sci. Technol. Weld. Join., 2009, vol. 14 (4), pp. 333–45.CrossRef
24.
Zurück zum Zitat W.S. Chang and S.J. Na: J. Mater. Processing Technol., 2002, vol. 120 (1–3), pp. 208–14.CrossRef W.S. Chang and S.J. Na: J. Mater. Processing Technol., 2002, vol. 120 (1–3), pp. 208–14.CrossRef
25.
Zurück zum Zitat W. Koechner: Solid State Laser Engineering, 3rd ed., Springer-Verlag, Berlin, 1992, p. 194. W. Koechner: Solid State Laser Engineering, 3rd ed., Springer-Verlag, Berlin, 1992, p. 194.
26.
Zurück zum Zitat ABAQUS Reference Manual, ch. 6, Heat Transfer Analysis, Hibbit, Karlson & Sorensen, Pawtucket, RI, 2001. ABAQUS Reference Manual, ch. 6, Heat Transfer Analysis, Hibbit, Karlson & Sorensen, Pawtucket, RI, 2001.
27.
28.
Zurück zum Zitat J.R. Cahoon, W.H. Broughton, and A.R. Kutzak: Metall. Trans., 1971, vol. 2, pp. 1979–83. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak: Metall. Trans., 1971, vol. 2, pp. 1979–83.
29.
Zurück zum Zitat B.P. Kashyap and K. Tangri: Acta Metall. Mater., 1995, vol. 43 (11), pp. 3971–81.CrossRef B.P. Kashyap and K. Tangri: Acta Metall. Mater., 1995, vol. 43 (11), pp. 3971–81.CrossRef
30.
Zurück zum Zitat K.K. Singh, S. Sangal, and G.S. Murty: Mater. Sci. Technol., 2002, vol. 18 (2), pp. 165–72.CrossRef K.K. Singh, S. Sangal, and G.S. Murty: Mater. Sci. Technol., 2002, vol. 18 (2), pp. 165–72.CrossRef
31.
Zurück zum Zitat G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw Hill Book Co., Singapore, 1998, p. 330. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw Hill Book Co., Singapore, 1998, p. 330.
32.
Zurück zum Zitat F.A. McClintock and A.S. Argon: Mechanical Behaviour of Materials, Addison-Wesley Publ. Co., Reading, MA, 1966, p. 457. F.A. McClintock and A.S. Argon: Mechanical Behaviour of Materials, Addison-Wesley Publ. Co., Reading, MA, 1966, p. 457.
Metadaten
Titel
Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel
verfasst von
V. D. Manvatkar
A. A. Gokhale
G. Jagan Reddy
A. Venkataramana
A. De
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 13/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0787-8

Weitere Artikel der Ausgabe 13/2011

Metallurgical and Materials Transactions A 13/2011 Zur Ausgabe

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

On Homogeneous Nucleation of Dislocation Loops in Nanocrystalline Materials

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.