Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 13/2011

01-12-2011 | Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

Authors: Andre P. Garcia, Dipanjan Sen, Markus J. Buehler

Published in: Metallurgical and Materials Transactions A | Issue 13/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A universal design paradigm in biology is the use of hierarchies, which is evident in the structure of proteins, cells, tissues, and organisms, as well as outside the material realm in the design of signaling networks in complex organs such as the brain. A fascinating example of a biological structure is that of diatoms, a microscopic mineralized algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges from the nano- to the macroscale. Here, we use the porous structure found at submicron length scales in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We consider the mechanical performance of two nanoscale levels of hierarchy, studying an array of thin-walled foil silica structures and a hierarchical arrangement of foil elements into a porous silica mesh structure. By comparing their elastic, plastic, and failure mechanisms under tensile deformation, we elucidate the impact of hierarchies and the wall width of constituting silica foils on the mechanical properties, by carrying out a series of large-scale molecular dynamics (MD) simulations with the first principles based reactive force field ReaxFF. We find that by controlling the wall width and by increasing the level of hierarchy of the nanostructure from a foil to a mesh, it is possible to significantly enhance the mechanical response of the material, creating a highly deformable, strong, and extremely tough material that can be stretched in excess of 100 pct strain, in stark contrast to the characteristic brittle performance of bulk silica. We find that concurrent mechanisms of shearing and crack arrest lead to an enhanced toughness and are enabled through the hierarchical assembly of foil elements into a mesh structure, which could not be achieved in foil structures alone. Our results demonstrate that including higher levels of hierarchy are beneficial in improving the mechanical properties and deformability of intrinsically brittle materials. The findings reported here provide insight into general material design approaches that may enable us to transform a brittle material such as silicon or silica into a ductile, yet strong and tough material, solely through alterations of its structural arrangement at the nanoscale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, and P. Fratzl: Science, 2005, vol. 309 (5732), pp. 275–78. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, and P. Fratzl: Science, 2005, vol. 309 (5732), pp. 275–78.
2.
go back to reference P. Fratzl and R. Weinkamer: Prog. Mater. Sci., 2007, vol. 52, pp. 1263–1334.CrossRef P. Fratzl and R. Weinkamer: Prog. Mater. Sci., 2007, vol. 52, pp. 1263–1334.CrossRef
3.
go back to reference R.O. Ritchie, M.J. Buehler, and P. Hansma: Phys. Today, 2009, vol. 62 (6), pp. 41–47.CrossRef R.O. Ritchie, M.J. Buehler, and P. Hansma: Phys. Today, 2009, vol. 62 (6), pp. 41–47.CrossRef
4.
5.
go back to reference F.E. Round, R.M. Crawford, and D.G. Mann: Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, United Kingdom, 1990. F.E. Round, R.M. Crawford, and D.G. Mann: Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, United Kingdom, 1990.
7.
go back to reference J.A. Raven and A.M. Waite: Tansley Rev., 2003, vol. 162, pp. 45–61. J.A. Raven and A.M. Waite: Tansley Rev., 2003, vol. 162, pp. 45–61.
8.
go back to reference C.E. Hamm and V. Smetacek: in Evolution of Primary Producers in the Sea, P.G. Falkowski and A.H. Knoll, eds., Elsevier, Boston, MA, 2007, pp. 311–32. C.E. Hamm and V. Smetacek: in Evolution of Primary Producers in the Sea, P.G. Falkowski and A.H. Knoll, eds., Elsevier, Boston, MA, 2007, pp. 311–32.
9.
go back to reference S.W. Fowler and N.S. Fisher: Deep Sea Res., 1983, vol. 39 (9), pp. 963–69. S.W. Fowler and N.S. Fisher: Deep Sea Res., 1983, vol. 39 (9), pp. 963–69.
10.
go back to reference H.-C. Shin, J.A. Corno, J.L. Gole, and M. Liu: J. Power Sources, 2005, vol. 139 (1–2), pp. 314–20. H.-C. Shin, J.A. Corno, J.L. Gole, and M. Liu: J. Power Sources, 2005, vol. 139 (1–2), pp. 314–20.
11.
go back to reference E.K. Prince, T.L. Myers, and J. Kubanek: Limnol. Oceanogr., 2008, vol. 53 (2), pp. 531–41.CrossRef E.K. Prince, T.L. Myers, and J. Kubanek: Limnol. Oceanogr., 2008, vol. 53 (2), pp. 531–41.CrossRef
12.
go back to reference Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy Iii, C.J. Summers, M. Liu, and K.H. Sandhage: Nature, 2007, vol. 446 (7132), pp. 172–75. Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy Iii, C.J. Summers, M. Liu, and K.H. Sandhage: Nature, 2007, vol. 446 (7132), pp. 172–75.
13.
go back to reference D. Losic, J.G. Mitchell, and N.H. Voelcker: Adv. Mater., 2009, vol. 21 (29), pp. 2947–58.CrossRef D. Losic, J.G. Mitchell, and N.H. Voelcker: Adv. Mater., 2009, vol. 21 (29), pp. 2947–58.CrossRef
14.
go back to reference N. Tokranova, I.A. Levitsky, B. Xu, J. Castracane, and W.B. Euler: Hybrid Solar Cells Based on Organic Material Embedded into Porous Silicon, SPIE, San Jose, CA, 2005. N. Tokranova, I.A. Levitsky, B. Xu, J. Castracane, and W.B. Euler: Hybrid Solar Cells Based on Organic Material Embedded into Porous Silicon, SPIE, San Jose, CA, 2005.
15.
go back to reference C. Jeffryes, T. Gutu, J. Jiao, and G.L. Rorrer: ACS Nano, 2008, vol. 2 (10), pp. 2103–12. C. Jeffryes, T. Gutu, J. Jiao, and G.L. Rorrer: ACS Nano, 2008, vol. 2 (10), pp. 2103–12.
16.
go back to reference W. Fenical: Plants: the Potentials for Extracting Protein, Medicines, and Other Useful Chemicals: Workshop Proc., Washington, DC, U.S. Government Printing Office, Washington, DC, 1983, pp. 147–53. W. Fenical: Plants: the Potentials for Extracting Protein, Medicines, and Other Useful Chemicals: Workshop Proc., Washington, DC, U.S. Government Printing Office, Washington, DC, 1983, pp. 147–53.
17.
go back to reference J.T. Allen, L. Brown, R. Sanders, C. Mark Moore, A. Mustard, S. Fielding, M. Lucas, M. Rixen, G. Savidge, S. Henson, and D. Mayor: Nature, 2005, vol. 437 (7059), pp. 728–32. J.T. Allen, L. Brown, R. Sanders, C. Mark Moore, A. Mustard, S. Fielding, M. Lucas, M. Rixen, G. Savidge, S. Henson, and D. Mayor: Nature, 2005, vol. 437 (7059), pp. 728–32.
18.
go back to reference E. Litchman, C.A. Klausmeier, and K. Yoshiyama: Proc. Nat. Acad. Sci., 2009, vol. 106 (8), pp. 2665–70.CrossRef E. Litchman, C.A. Klausmeier, and K. Yoshiyama: Proc. Nat. Acad. Sci., 2009, vol. 106 (8), pp. 2665–70.CrossRef
19.
go back to reference C.E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, and V. Smetacek: Nature, 2003, vol. 421 (6925), pp. 841–43. C.E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, and V. Smetacek: Nature, 2003, vol. 421 (6925), pp. 841–43.
20.
go back to reference D. Losic, K. Short, J.G. Mitchell, R. Lal, and N.H. Voelcker: Langmuir, 2007, vol. 23 (9), pp. 5014–21. D. Losic, K. Short, J.G. Mitchell, R. Lal, and N.H. Voelcker: Langmuir, 2007, vol. 23 (9), pp. 5014–21.
21.
go back to reference D. Losic, R.J. Pillar, T. Dilger, J.G. Mitchell, and N.H. Voelcker: J. Porous Mater., 2007, vol. 14, pp. 61–69. D. Losic, R.J. Pillar, T. Dilger, J.G. Mitchell, and N.H. Voelcker: J. Porous Mater., 2007, vol. 14, pp. 61–69.
22.
go back to reference A.P. Garcia and M.J. Buehler: Comput. Mater. Sci., 2010, vol. 48 (2), pp. 303–09.CrossRef A.P. Garcia and M.J. Buehler: Comput. Mater. Sci., 2010, vol. 48 (2), pp. 303–09.CrossRef
24.
go back to reference T.Y. Kim, S.S. Han, and H.M. Lee: Mater. Trans., 2004, vol. 45 (5), pp. 1442–49.CrossRef T.Y. Kim, S.S. Han, and H.M. Lee: Mater. Trans., 2004, vol. 45 (5), pp. 1442–49.CrossRef
25.
go back to reference T.J. Chuang, P.M. Anderson, M.K. Wu, S. Hsieh, and T.-j. Chuang: in Nanomechanics of Materials and Structures, Springer, Netherlands, 2006, pp. 67–78. T.J. Chuang, P.M. Anderson, M.K. Wu, S. Hsieh, and T.-j. Chuang: in Nanomechanics of Materials and Structures, Springer, Netherlands, 2006, pp. 67–78.
26.
go back to reference T. Namazu and Y. Isono: Sens. Actuat. A, Phys., 2003, vol. 104 (1), pp. 78–85.CrossRef T. Namazu and Y. Isono: Sens. Actuat. A, Phys., 2003, vol. 104 (1), pp. 78–85.CrossRef
27.
28.
go back to reference E.C. Silva, L. Tong, S. Yip, and K.J. Van Vliet: Size Effects on the Stiffness of Silica Nanowires, Small, 2006, vol. 2 (2), pp. 239–43. E.C. Silva, L. Tong, S. Yip, and K.J. Van Vliet: Size Effects on the Stiffness of Silica Nanowires, Small, 2006, vol. 2 (2), pp. 239–43.
29.
go back to reference J.P Lucas, N.R. Moody, S.L. Robinson, J. Hanrock, and R.Q. Hwang: Scripta Metall. Mater., 1995, vol. 32 (5), pp. 743–48. J.P Lucas, N.R. Moody, S.L. Robinson, J. Hanrock, and R.Q. Hwang: Scripta Metall. Mater., 1995, vol. 32 (5), pp. 743–48.
30.
go back to reference D. Bonamy, S. Prades, C. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot: Int. J. Fract., 2006, vol. 140 (1), pp. 3–14. D. Bonamy, S. Prades, C. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot: Int. J. Fract., 2006, vol. 140 (1), pp. 3–14.
31.
go back to reference M.J. Buehler, H. Tang, A.C.T. van Duin, and W.A. Goddard: Phys. Rev. Lett., 2007, vol. 99, p. 165502. M.J. Buehler, H. Tang, A.C.T. van Duin, and W.A. Goddard: Phys. Rev. Lett., 2007, vol. 99, p. 165502.
32.
go back to reference M.J. Buehler, A.C.T. van Duin, and W.A. Goddard: Phys. Rev. Lett., 2006, vol. 96 (9), p. 095505.CrossRef M.J. Buehler, A.C.T. van Duin, and W.A. Goddard: Phys. Rev. Lett., 2006, vol. 96 (9), p. 095505.CrossRef
33.
go back to reference J.C. Fogarty, H.M. Aktulga, A.Y. Grama, A.C.T. van Duin, and S.A. Pandit: J. Chem. Phys., 2010, vol. 132 (17), pp. 174704–10. J.C. Fogarty, H.M. Aktulga, A.Y. Grama, A.C.T. van Duin, and S.A. Pandit: J. Chem. Phys., 2010, vol. 132 (17), pp. 174704–10.
34.
go back to reference A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard: J. Phys. Chem. A, 2001, vol. 105, p. 9396. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard: J. Phys. Chem. A, 2001, vol. 105, p. 9396.
35.
go back to reference A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W.A. Goddard: J. Phys. Chem. A, 2003, vol. 107 (19), pp. 3803–11. A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W.A. Goddard: J. Phys. Chem. A, 2003, vol. 107 (19), pp. 3803–11.
36.
go back to reference W.W. Zhang, Q.A. Huang, H. Yu, and L.B. Lu: in Micro and Nano Technology—1st Int. Conf. of Chinese Society of Micro/Nano Technology (Csmnt), X. Wang, ed., Trans Tech Publications Ltd., Stafa-Zurich, 2009, pp. 315–19. W.W. Zhang, Q.A. Huang, H. Yu, and L.B. Lu: in Micro and Nano Technology1st Int. Conf. of Chinese Society of Micro/Nano Technology (Csmnt), X. Wang, ed., Trans Tech Publications Ltd., Stafa-Zurich, 2009, pp. 315–19.
37.
go back to reference D. Raymand, A.C.T. van Duin, M. Baudin, and K. Hermansson: Surf. Sci., 2008, vol. 602 (5), pp. 1020–31. D. Raymand, A.C.T. van Duin, M. Baudin, and K. Hermansson: Surf. Sci., 2008, vol. 602 (5), pp. 1020–31.
38.
go back to reference W. Liu, K. Zhang, H. Xiao, L. Meng, J. Li, G.M. Stocks, and J. Zhong: Nanotechnology, 2007, vol. 18 (21), p. 215703. W. Liu, K. Zhang, H. Xiao, L. Meng, J. Li, G.M. Stocks, and J. Zhong: Nanotechnology, 2007, vol. 18 (21), p. 215703.
39.
go back to reference H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak: J. Chem. Phys., 1984, vol. 81 (8), pp. 3684–90. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak: J. Chem. Phys., 1984, vol. 81 (8), pp. 3684–90.
40.
go back to reference J.A. Zimmerman, E.B. Webb III, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann: Model. Sim. Mater. Sci. Eng., 2004, vol. 12, pp. S319–S332. J.A. Zimmerman, E.B. Webb III, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann: Model. Sim. Mater. Sci. Eng., 2004, vol. 12, pp. S319–S332.
41.
go back to reference T. Zhu, J. Li, S. Yip, R.J. Bartlett, S.B. Trickey, and N.H. de Leeuw: Molec. Simul., 2003, vol. 29 (10), pp. 671–76. T. Zhu, J. Li, S. Yip, R.J. Bartlett, S.B. Trickey, and N.H. de Leeuw: Molec. Simul., 2003, vol. 29 (10), pp. 671–76.
42.
go back to reference E. Silva, J. Li, D. Liao, S. Subramanian, T. Zhu, and S. Yip: J. Comput. Aided Mater. Des., 2006, vol. 13 (1), pp. 135–59. E. Silva, J. Li, D. Liao, S. Subramanian, T. Zhu, and S. Yip: J. Comput. Aided Mater. Des., 2006, vol. 13 (1), pp. 135–59.
43.
go back to reference H. Kimizuka, S. Ogata, and Y. Shibutani: Phys. Status Solidi (b), 2007, vol. 244 (3), pp. 900–09.CrossRef H. Kimizuka, S. Ogata, and Y. Shibutani: Phys. Status Solidi (b), 2007, vol. 244 (3), pp. 900–09.CrossRef
44.
go back to reference B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X.M. Sun, and Y.D. Li: Nano Lett., 2006, vol. 6 (3), pp. 468–72. B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X.M. Sun, and Y.D. Li: Nano Lett., 2006, vol. 6 (3), pp. 468–72.
45.
go back to reference H. Liang, M. Upmanyu, and H. Huang: Phys. Rev. B, 2005, vol. 71 (24), p. 241403.CrossRef H. Liang, M. Upmanyu, and H. Huang: Phys. Rev. B, 2005, vol. 71 (24), p. 241403.CrossRef
46.
go back to reference C.L. Rountree, S. Prades, D. Bonamy, E. Bouchaud, R. Kalia, and C. Guillot: J. Alloys Compd., 2007, vols. 434–435, pp. 60–63. C.L. Rountree, S. Prades, D. Bonamy, E. Bouchaud, R. Kalia, and C. Guillot: J. Alloys Compd., 2007, vols. 434–435, pp. 60–63.
47.
48.
go back to reference S. Keten, Z. Xu, B. Ihle, and M.J. Buehler: Nat. Mater., 2010, vol. 9, pp. 359–67. S. Keten, Z. Xu, B. Ihle, and M.J. Buehler: Nat. Mater., 2010, vol. 9, pp. 359–67.
49.
50.
go back to reference N. Lundholm, Ø. Moestrup, G.R. Hasle, and K. Hoef-Emden: J. Phycol., 2003, vol. 39 (4), pp. 797–813. N. Lundholm, Ø. Moestrup, G.R. Hasle, and K. Hoef-Emden: J. Phycol., 2003, vol. 39 (4), pp. 797–813.
Metadata
Title
Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength
Authors
Andre P. Garcia
Dipanjan Sen
Markus J. Buehler
Publication date
01-12-2011
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 13/2011
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-010-0477-y

Other articles of this Issue 13/2011

Metallurgical and Materials Transactions A 13/2011 Go to the issue

Premium Partners