Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

04-05-2023 | Technical Article

Modeling the Double-Pass Flow Curve of Nb Micro-Alloyed Steel by Machine Learning and its Extrapolation to Static Softening Kinetics

Authors: Xin Li, Qiming Jiang, Xiaoguang Zhou, Siwei Wu, Guangming Cao, Zhenyu Liu

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a method to predict the double-pass flow stress behavior of hot-rolled niobium (Nb) micro-alloyed steel by combining the constitutive model and back-propagation neural network (BPNN) model (the machine learning (ML) model). The constitutive model is used to predict the first-pass flow stress behavior, and the BPNN model is used to predict the second-pass flow stress behavior. The results show that the ML model can accurately predict the double-pass flow stress behavior at different temperatures and holding time. The second-pass flow stress predicted by the BPNN model is compared with those predicted by the mathematical model in the previous literature. The results show that the BPNN model can more accurately predict the second-pass flow stress than the mathematical model in the previous literature. In addition, the static softening fraction during the interval time is calculated by using the predicted double-pass flow stress curve in this paper. The results show that the precision of the static softening fraction calculated in this paper is not only higher than that of the traditional Avrami kinetic model but also higher than that of the traditional model which couples recovery, precipitation and recrystallization. Therefore, the ML model for predicting the double-pass flow stress behavior has high accuracy and provides a theoretical basis for predicting the double-pass flow stress behavior of other alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference X.W. Lei, R.B. Yang, J.M. Liu, L.F. Zeng, C.B. Lai, and X. Luo, Solubility Product and Equilibrium Equations of Nonstoichiometric Niobium Carbonitride in Steels: Thermodynamic Calculations, Metall. Mater. Trans. A, 2021, 52(10), p 4402–4412.CrossRef X.W. Lei, R.B. Yang, J.M. Liu, L.F. Zeng, C.B. Lai, and X. Luo, Solubility Product and Equilibrium Equations of Nonstoichiometric Niobium Carbonitride in Steels: Thermodynamic Calculations, Metall. Mater. Trans. A, 2021, 52(10), p 4402–4412.CrossRef
2.
go back to reference Y. Yang, T.R. Li, T. Jia, Z.D. Wang, and R.D.K. Misra, Dynamic Recrystallization and Flow Behavior in Low Carbon Nb-Ti Microalloyed Steel, Steel Res. Int., 2018, 89(4), p 1700395.CrossRef Y. Yang, T.R. Li, T. Jia, Z.D. Wang, and R.D.K. Misra, Dynamic Recrystallization and Flow Behavior in Low Carbon Nb-Ti Microalloyed Steel, Steel Res. Int., 2018, 89(4), p 1700395.CrossRef
3.
go back to reference B. Jia and Y. Peng, Constitutive Relationships of Nb Microalloyed Steel During High Temperature Deformation, Acta Metall. Sin., 2011, 47(4), p 507–512. B. Jia and Y. Peng, Constitutive Relationships of Nb Microalloyed Steel During High Temperature Deformation, Acta Metall. Sin., 2011, 47(4), p 507–512.
4.
go back to reference G. Kugler and R. Turk, Modeling the Dynamic Recrystallization under Multi-Stage Hot Deformation, Acta Mater., 2004, 52(15), p 4659–4668.CrossRef G. Kugler and R. Turk, Modeling the Dynamic Recrystallization under Multi-Stage Hot Deformation, Acta Mater., 2004, 52(15), p 4659–4668.CrossRef
5.
go back to reference K. Minami, F. Siciliano Jr., T.M. Maccagno, and J.J. Jonas, Mathematical Modeling of Mean Flow Stress During the Hot Strip Rolling of Nb Steels, ISIJ Int., 1996, 36, p 1507–1515.CrossRef K. Minami, F. Siciliano Jr., T.M. Maccagno, and J.J. Jonas, Mathematical Modeling of Mean Flow Stress During the Hot Strip Rolling of Nb Steels, ISIJ Int., 1996, 36, p 1507–1515.CrossRef
6.
go back to reference X. Nie, Deformation Behavior and Constitutive Model of AZ31 and GW83 Magnesium Alloy During Double-Pass Isothermal Compression, Shanghai Jiao Tong University, Shanghai, 2020, p 89 X. Nie, Deformation Behavior and Constitutive Model of AZ31 and GW83 Magnesium Alloy During Double-Pass Isothermal Compression, Shanghai Jiao Tong University, Shanghai, 2020, p 89
7.
go back to reference X. Nie, S. Dong, F. Wang, L. Jin, and J. Dong, Effects of Holding Time and Zener-Hollomon Parameters on Deformation Behavior of Cast Mg-8Gd-3Y Alloy During Double-Pass Hot Compression, J. Mater. Sci. Technol., 2018, 34(11), p 2035–2041.CrossRef X. Nie, S. Dong, F. Wang, L. Jin, and J. Dong, Effects of Holding Time and Zener-Hollomon Parameters on Deformation Behavior of Cast Mg-8Gd-3Y Alloy During Double-Pass Hot Compression, J. Mater. Sci. Technol., 2018, 34(11), p 2035–2041.CrossRef
8.
go back to reference X. Nie, S. Dong, F. Wang, L. Jin, Z. Zhang, J. Dong, and Y. Wang, Flow Behavior and Formability of Hot-Rolled Mg-8gd-3y Alloy under Double-Pass Isothermal Compression, J. Mater. Process. Technol., 2020, 275, p 116328.CrossRef X. Nie, S. Dong, F. Wang, L. Jin, Z. Zhang, J. Dong, and Y. Wang, Flow Behavior and Formability of Hot-Rolled Mg-8gd-3y Alloy under Double-Pass Isothermal Compression, J. Mater. Process. Technol., 2020, 275, p 116328.CrossRef
9.
go back to reference X. Nie, J. Ni, S. Dong, F. Wang, L. Jin, and J. Dong, Preferential Grain Growth and Textural Evolution of Az31b Mg Alloy During Annealing after Isothermal Compression at 400 °C, Mater. Charact., 2020, 169, p 110566.CrossRef X. Nie, J. Ni, S. Dong, F. Wang, L. Jin, and J. Dong, Preferential Grain Growth and Textural Evolution of Az31b Mg Alloy During Annealing after Isothermal Compression at 400 °C, Mater. Charact., 2020, 169, p 110566.CrossRef
10.
go back to reference D. Wang, R. Zhang, and S. Yuan, Flow Behavior and Microstructure Evolution of a TiBw/TA15 Composite with Network-Distributed Reinforcements During Interrupted Hot Compression, Mater. Sci. Eng. A, 2018, 725, p 428–436.CrossRef D. Wang, R. Zhang, and S. Yuan, Flow Behavior and Microstructure Evolution of a TiBw/TA15 Composite with Network-Distributed Reinforcements During Interrupted Hot Compression, Mater. Sci. Eng. A, 2018, 725, p 428–436.CrossRef
11.
go back to reference R. Zeng, L. Huang, J. Li, H. Li, H. Zhu, and X. Zhang, Quantification of Multiple Softening Processes Occurring During Multi-Stage Thermoforming of High-Strength Steel, Int. J. Plast., 2019, 120, p 64–87.CrossRef R. Zeng, L. Huang, J. Li, H. Li, H. Zhu, and X. Zhang, Quantification of Multiple Softening Processes Occurring During Multi-Stage Thermoforming of High-Strength Steel, Int. J. Plast., 2019, 120, p 64–87.CrossRef
12.
go back to reference H.E. Cho, Y. Hammi, A.L. Bowman, S.-I. Karato, J.R. Baumgardner, and M.F. Horstemeyer, A Unified Static and Dynamic Recrystallization Internal State Variable (ISV) Constitutive Model Coupled with Grain Size Evolution for Metals and Mineral Aggregates, Int. J. Plast., 2018, 112, p 123–157.CrossRef H.E. Cho, Y. Hammi, A.L. Bowman, S.-I. Karato, J.R. Baumgardner, and M.F. Horstemeyer, A Unified Static and Dynamic Recrystallization Internal State Variable (ISV) Constitutive Model Coupled with Grain Size Evolution for Metals and Mineral Aggregates, Int. J. Plast., 2018, 112, p 123–157.CrossRef
13.
go back to reference S.F. Medina, A. Quispe, and M. Gomez, Model for Static Recrystallisation Critical Temperature in Microalloyed Steels, Mater. Sci. Technol., 2001, 17(5), p 536–544.CrossRef S.F. Medina, A. Quispe, and M. Gomez, Model for Static Recrystallisation Critical Temperature in Microalloyed Steels, Mater. Sci. Technol., 2001, 17(5), p 536–544.CrossRef
14.
go back to reference L.P. Karjalainen, T.M. Maccagno, and J.J. Jonas, Softening and Flow Stress Behaviour of Nb Microalloyed Steels During Hot Rolling Simulation, ISIJ Int., 1995, 35(12), p 1523–1531.CrossRef L.P. Karjalainen, T.M. Maccagno, and J.J. Jonas, Softening and Flow Stress Behaviour of Nb Microalloyed Steels During Hot Rolling Simulation, ISIJ Int., 1995, 35(12), p 1523–1531.CrossRef
15.
go back to reference H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190.CrossRef H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190.CrossRef
16.
go back to reference H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy, Modeling Recrystallization of Microalloyed Austenite: Effect of Coupling Recovery Precipitation and Recrystallization, Acta Mater., 2002, 50(12), p 3075–3092.CrossRef H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy, Modeling Recrystallization of Microalloyed Austenite: Effect of Coupling Recovery Precipitation and Recrystallization, Acta Mater., 2002, 50(12), p 3075–3092.CrossRef
17.
go back to reference J. Tang, F. Jiang, C. Luo, G. Bo, K. Chen, J. Teng, D. Fu, and H. Zhang, Integrated Physically Based Modeling for the Multiple Static Softening Mechanisms Following Multi-Stage Hot Deformation in Al-Zn-Mg-Cu Alloys, Int. J. Plast., 2020, 134, p 102809.CrossRef J. Tang, F. Jiang, C. Luo, G. Bo, K. Chen, J. Teng, D. Fu, and H. Zhang, Integrated Physically Based Modeling for the Multiple Static Softening Mechanisms Following Multi-Stage Hot Deformation in Al-Zn-Mg-Cu Alloys, Int. J. Plast., 2020, 134, p 102809.CrossRef
18.
go back to reference S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu, and G.D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685.CrossRef S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu, and G.D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685.CrossRef
19.
go back to reference C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, and W. Xu, Physical Metallurgy-Guided Machine Learning and Artificial Intelligent Design of Ultrahigh-Strength Stainless Steel, Acta Mater., 2019, 179, p 201–214.CrossRef C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, and W. Xu, Physical Metallurgy-Guided Machine Learning and Artificial Intelligent Design of Ultrahigh-Strength Stainless Steel, Acta Mater., 2019, 179, p 201–214.CrossRef
20.
go back to reference Z. Wang, L. Zhang, W. Li, Z. Qin, Z. Wang, Z. Li, L. Tan, L. Zhu, F. Liu, H. Han, and L. Jiang, High Throughput Experiment Assisted Discovery of New Ni-Base Superalloys, Scripta Mater., 2020, 178, p 134–138.CrossRef Z. Wang, L. Zhang, W. Li, Z. Qin, Z. Wang, Z. Li, L. Tan, L. Zhu, F. Liu, H. Han, and L. Jiang, High Throughput Experiment Assisted Discovery of New Ni-Base Superalloys, Scripta Mater., 2020, 178, p 134–138.CrossRef
21.
go back to reference M. Ahmed, O.M. Horst, A. Obaied, I. Steinbach, and I. Roslyakova, Automated Image Analysis for Quantification of Materials Microstructure Evolution, Model. Simul. Mater. Sci., 2021, 29(5), p 055012.CrossRef M. Ahmed, O.M. Horst, A. Obaied, I. Steinbach, and I. Roslyakova, Automated Image Analysis for Quantification of Materials Microstructure Evolution, Model. Simul. Mater. Sci., 2021, 29(5), p 055012.CrossRef
22.
go back to reference C. Wang, H. Fu, L. Jiang, D. Xue, and J. Xie, A Property-Oriented Design Strategy for High Performance Copper Alloys Via Machine Learning, Npj Comput. Mater., 2019, 5(1), p 87.CrossRef C. Wang, H. Fu, L. Jiang, D. Xue, and J. Xie, A Property-Oriented Design Strategy for High Performance Copper Alloys Via Machine Learning, Npj Comput. Mater., 2019, 5(1), p 87.CrossRef
23.
go back to reference H. Abarghooei, H. Arabi, S.H. Seyedein, and B. Mirzakhani, Modeling of Steady State Hot Flow Behavior of Api-X70 Microalloyed Steel Using Genetic Algorithm and Design of Experiments, Appl. Soft Comput., 2017, 52, p 471–477.CrossRef H. Abarghooei, H. Arabi, S.H. Seyedein, and B. Mirzakhani, Modeling of Steady State Hot Flow Behavior of Api-X70 Microalloyed Steel Using Genetic Algorithm and Design of Experiments, Appl. Soft Comput., 2017, 52, p 471–477.CrossRef
24.
go back to reference S. Kumar, S. Kumar, R. Prakash, M.K.T. Shankar, and S.B. Kumar, Prediction of Flow Stress for Carbon Steels Using Recurrent Self-Organizing Neuro Fuzzy Networks, Expert Syst. Appl., 2007, 32(3), p 777–788.CrossRef S. Kumar, S. Kumar, R. Prakash, M.K.T. Shankar, and S.B. Kumar, Prediction of Flow Stress for Carbon Steels Using Recurrent Self-Organizing Neuro Fuzzy Networks, Expert Syst. Appl., 2007, 32(3), p 777–788.CrossRef
25.
go back to reference G.Z. Quan, J.T. Liang, W.Q. Lv, D.S. Wu, Y.Y. Liu, G.C. Luo, and J. Zhou, A Characterization for the Constitutive Relationships of 42CrMo High Strength Steel by Artificial Neural Network and Its Application in Isothermal Deformation, Mater. Res., 2014, 17(5), p 1102–1114.CrossRef G.Z. Quan, J.T. Liang, W.Q. Lv, D.S. Wu, Y.Y. Liu, G.C. Luo, and J. Zhou, A Characterization for the Constitutive Relationships of 42CrMo High Strength Steel by Artificial Neural Network and Its Application in Isothermal Deformation, Mater. Res., 2014, 17(5), p 1102–1114.CrossRef
26.
go back to reference L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li, Flow Stress Prediction of High-Nb Ti Al Alloys under High Temperature Deformation, Adv. Mater. Res., 2012, 510, p 723–728.CrossRef L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li, Flow Stress Prediction of High-Nb Ti Al Alloys under High Temperature Deformation, Adv. Mater. Res., 2012, 510, p 723–728.CrossRef
27.
go back to reference X. Ma, W. Zeng, Y. Sun, K. Wang, Y. Lai, and Y. Zhou, Modeling Constitutive Relationship of Ti17 Titanium Alloy with Lamellar Starting Microstructure, Mater. Sci. Eng. A, 2012, 538, p 182–189.CrossRef X. Ma, W. Zeng, Y. Sun, K. Wang, Y. Lai, and Y. Zhou, Modeling Constitutive Relationship of Ti17 Titanium Alloy with Lamellar Starting Microstructure, Mater. Sci. Eng. A, 2012, 538, p 182–189.CrossRef
28.
go back to reference N. Kotkunde, A.D. Deole, A.K. Gupta, and S.K. Singh, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999–1005.CrossRef N. Kotkunde, A.D. Deole, A.K. Gupta, and S.K. Singh, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999–1005.CrossRef
29.
go back to reference G. Srinivasu, R.N. Rao, T.K. Nandy, and A. Bhattacharjee, Artificial Neural Network Approach for Prediction of Titanium Alloy Stress-Strain Curve, Procedia Eng., 2012, 38, p 3709–3714.CrossRef G. Srinivasu, R.N. Rao, T.K. Nandy, and A. Bhattacharjee, Artificial Neural Network Approach for Prediction of Titanium Alloy Stress-Strain Curve, Procedia Eng., 2012, 38, p 3709–3714.CrossRef
30.
go back to reference Y. Sun, L. Hu, and J. Ren, Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy during Hot Deformation, J. Mater. Eng. Perform., 2015, 24(3), p 1313–1321.CrossRef Y. Sun, L. Hu, and J. Ren, Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy during Hot Deformation, J. Mater. Eng. Perform., 2015, 24(3), p 1313–1321.CrossRef
31.
go back to reference A.I. Fernandez, B. Lopez, and J.M. Rodrıguez-Ibabe, Relationship between the Austenite Recrystallization Fraction and the Softening Measured from the Interrupted Torsion Test Technique, Scripta Mater., 1999, 40, p 543–549.CrossRef A.I. Fernandez, B. Lopez, and J.M. Rodrıguez-Ibabe, Relationship between the Austenite Recrystallization Fraction and the Softening Measured from the Interrupted Torsion Test Technique, Scripta Mater., 1999, 40, p 543–549.CrossRef
32.
go back to reference M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915.CrossRef M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915.CrossRef
33.
go back to reference J.H. Zhou and K.Z. Guan, Resistance to Plastic Deformation of Metals, 1989 (Beijing), Machinery Industry Press, Beijing, 1989, p 20–51 J.H. Zhou and K.Z. Guan, Resistance to Plastic Deformation of Metals, 1989 (Beijing), Machinery Industry Press, Beijing, 1989, p 20–51
34.
go back to reference X. Li, X.G. Zhou, G.M. Cao, S.H. Xu, Y. Wang, and Z.Y. Liu, Machine Learning Hot Deformation Behavior of Nb Micro-Alloyed Steels and Its Extrapolation to Dynamic Recrystallization Kinetics, Metall. Mater. Trans. A, 2021, 52, p 3171–3181.CrossRef X. Li, X.G. Zhou, G.M. Cao, S.H. Xu, Y. Wang, and Z.Y. Liu, Machine Learning Hot Deformation Behavior of Nb Micro-Alloyed Steels and Its Extrapolation to Dynamic Recrystallization Kinetics, Metall. Mater. Trans. A, 2021, 52, p 3171–3181.CrossRef
35.
go back to reference M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, and J.J. Li, In-situ Observations and Modeling of Static Recrystallization in 300 M Steel, Mat. Sci. Eng. A, 2019, 765, p 138300.CrossRef M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, and J.J. Li, In-situ Observations and Modeling of Static Recrystallization in 300 M Steel, Mat. Sci. Eng. A, 2019, 765, p 138300.CrossRef
36.
go back to reference A. Yoshie, T. Fujita, M. Fujioka, K. Okamo, and H. Morikaw, Formulation of Flow Stress of Nb Added Steels by Considering Work-Hardening and Dynamic Recovery, ISIJ Int., 1996, 36(4), p 467–473.CrossRef A. Yoshie, T. Fujita, M. Fujioka, K. Okamo, and H. Morikaw, Formulation of Flow Stress of Nb Added Steels by Considering Work-Hardening and Dynamic Recovery, ISIJ Int., 1996, 36(4), p 467–473.CrossRef
37.
go back to reference C.A. Hernandezi, S.F. Medina, and J. Ruiz, Modelling Austenite Flow Curves in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 155–163.CrossRef C.A. Hernandezi, S.F. Medina, and J. Ruiz, Modelling Austenite Flow Curves in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 155–163.CrossRef
38.
go back to reference A. Karmakara, S. Biswasa, S. Mukherjee, D. Chakrabartia, and V. Kumar, Effect of Composition and Thermo-Mechanical Processing Schedule on the Microstructure, Precipitation and Strengthening of Nb-Microalloyed Steel, Mater. Sci. Eng. A, 2017, 690, p 158–169.CrossRef A. Karmakara, S. Biswasa, S. Mukherjee, D. Chakrabartia, and V. Kumar, Effect of Composition and Thermo-Mechanical Processing Schedule on the Microstructure, Precipitation and Strengthening of Nb-Microalloyed Steel, Mater. Sci. Eng. A, 2017, 690, p 158–169.CrossRef
39.
go back to reference A. Laasraoui and J. Jonas, Prediction of Temperature Distribution, Flow Stress and Microstructure During the Multipass Hot Rolling of Steel Plate and Strip, ISIJ Int., 1991, 31(1), p 95–105.CrossRef A. Laasraoui and J. Jonas, Prediction of Temperature Distribution, Flow Stress and Microstructure During the Multipass Hot Rolling of Steel Plate and Strip, ISIJ Int., 1991, 31(1), p 95–105.CrossRef
40.
go back to reference K.B. Kang, O. Kwon, W.B. Lee, and C.G. Park, Effect of Precipitation on the Recrystallization Behavior of a Nb Containing Steel, Scripta Mater., 1997, 36(11), p 1303–1308.CrossRef K.B. Kang, O. Kwon, W.B. Lee, and C.G. Park, Effect of Precipitation on the Recrystallization Behavior of a Nb Containing Steel, Scripta Mater., 1997, 36(11), p 1303–1308.CrossRef
41.
go back to reference Y.B. Cao, F.R. Xiao, G.Y. Qiao, C.J. Huang, X.B. Zhang, Z.X. Wu, and B. Liao, Strain-Induced Precipitation and Softening Behaviors of High Nb Microalloyed Steels, Mater. Sci. Eng. A, 2012, 552, p 502–513.CrossRef Y.B. Cao, F.R. Xiao, G.Y. Qiao, C.J. Huang, X.B. Zhang, Z.X. Wu, and B. Liao, Strain-Induced Precipitation and Softening Behaviors of High Nb Microalloyed Steels, Mater. Sci. Eng. A, 2012, 552, p 502–513.CrossRef
42.
go back to reference S. Liang, F. Fazeli, and H.S. Zurob, Effects of Solutes and Temperature on High-Temperature Deformation and Subsequent Recovery in Hot-Rolled Low Alloy Steels, Mater. Sci. Eng. A, 2019, 765, p 138324.CrossRef S. Liang, F. Fazeli, and H.S. Zurob, Effects of Solutes and Temperature on High-Temperature Deformation and Subsequent Recovery in Hot-Rolled Low Alloy Steels, Mater. Sci. Eng. A, 2019, 765, p 138324.CrossRef
43.
go back to reference S.F. Medina, P. Valles, J. Calvo, and J.M. Cabrera, Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results, Phys. Met. Metallogr., 2020, 121(1), p 32–40.CrossRef S.F. Medina, P. Valles, J. Calvo, and J.M. Cabrera, Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results, Phys. Met. Metallogr., 2020, 121(1), p 32–40.CrossRef
44.
go back to reference B. Dutta, E.J. Palmiere, and C.M. Sellars, Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels, Acta Mater., 2001, 49(5), p 785–794.CrossRef B. Dutta, E.J. Palmiere, and C.M. Sellars, Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels, Acta Mater., 2001, 49(5), p 785–794.CrossRef
45.
go back to reference Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006, p 161–165 Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006, p 161–165
Metadata
Title
Modeling the Double-Pass Flow Curve of Nb Micro-Alloyed Steel by Machine Learning and its Extrapolation to Static Softening Kinetics
Authors
Xin Li
Qiming Jiang
Xiaoguang Zhou
Siwei Wu
Guangming Cao
Zhenyu Liu
Publication date
04-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08221-9

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners